Some cardinal properties of stratifiable spaces mamadaliev N. K., Nurmatova M. Ya



Yüklə 186,9 Kb.
səhifə4/4
tarix11.05.2023
ölçüsü186,9 Kb.
#111734
1   2   3   4
SOME CARDINAL PROPERTIES OF STRATIFIABLE SPACES Mamadaliev N

Definition 3[8]. The functional tightness of a space is
= min{ : is an infinite cardinal and every -continuous real-valued function on is continuous}.
The minitightness (or the weak functional tightness) of a space is
= min{ : is an infinite cardinal and
every strictly -continuous real-valued function on is continuous}.
Since every strictly -continuous function is -continuous, we always have .
It was shown in [8] that always and ; furthermore, sup{ is a subspace of }, and if is the image of under a quotient mapping.
Yüklə 186,9 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin