Chemical characterization of the pulp, peel and seeds of cocona



Yüklə 0,7 Mb.
Pdf görüntüsü
tarix11.08.2017
ölçüsü0,7 Mb.

Campinas, v. 18, n. 3, p. 192-198, jul./set. 2015

http://dx.doi.org/10.1590/1981-6723.4314



Chemical characterization of the pulp, peel and seeds of cocona  

(Solanum sessiliflorum Dunal)

Caracterização química da polpa, casca e sementes de cocona  

(Solanum sessiliflorum Dunal)

*

Autor Correspondente | Corresponding Author

Received: Aug. 05, 2014  

Approved: Nov. 04, 2015

Summary

The chemical characterization of the pulp, peel and seeds of cocona 

(Solanum sessiliflorum Dunal) was determined. In artisanal fruit processing, 26.3% 

of peel and 9.7% of seeds were obtained. The seeds showed a high potential for 

the development of value-added products because of their dry matter contents 

(23.46%) as follows: carbohydrate (69.37% dry basis (d.b.)), nitrogen (3.18 g/100 g 

of seed d.b.), K (0.023 g/100 g of seed d.b.), Fe (0.0185 g/100 g of seed d.b.) 

and dietary fiber (21.27 g/100 g of seed d.b.). The carbohydrate, dietary fibre and 

mineral contents of the pulp, peel and seeds also highlighted the agroindustrial 

potential of the fruit in that these constituents could be used to develop functional 

foods, food additives, preparations for functional diets and dietary supplements.

Key words:

 Cocona; Amazonian fruits; Chemical composition; By-products.

Resumo

A caracterização química da polpa, casca e sementes de cocona (Solanum 



sessiliflorum Dunal) foi determinada. No processamento artesanal da fruta foram 

obtidos 26.3% de casca e 9.7% de sementes. As sementes apresentaram um alto 

potencial para o desenvolvimento de produtos com valor agregado devido ao seu 

conteúdo de matéria seca (23,46%), como segue: carboidrato (69,37% base seca 

(b.s.)), nitrogênio (3,18 g/100 g de sementes, b.s.), K (0,023 g/100 g de sementes, 

b.s.), Fe (0,0185 g/100 g de sementes, b.s.) e fibra dietética (21,27 g/100g de 

sementes, b.s.). O teor de carboidrato, fibra dietética e conteúdos minerais 

da polpa, casca e sementes também evidenciaram o potencial agroindustrial 

da fruta, visto que estes constituintes podem ser usados para desenvolver 

alimentos funcionais, aditivos para alimentos, preparações para dietas funcionais 

e suplementos dietéticos.   

Palavras-chave:

 Cocona; Frutas da Amazonia; Composição química; 

Sub-produtos.

*Liliana SERNA-COCK

Universidad Nacional de Colombia  

Facultad Ingeniería y Administración  

Sede Palmira  

Carrera 32,12, vía Candelaria  

Palmira/Valle del Cauca - Colombia  

e-mail: lserna@unal.edu.co

Diana Patricia VARGAS-MUÑOZ

Universidad Nacional de Colombia  

Ingeniería Agroindustrial (Buga Agricultural 

Center)  

Sede Palmira  

Palmira/Valle del Cauca - Colombia  

e-mail: dipvargasmu@unal.edu.co

Carlos Andrés RENGIFO-

GUERRERO

Universidad Nacional de Colombia  

Ingeniería Agroindustrial  

Sede Palmira  

Palmira/Valle del Cauca - Colombia  

e-mail: carengifog@unal.edu.co

Autores | Authors


http://bjft.ital.sp.gov.br

193


Braz. J. Food Technol., Campinas v. 18, n. 3, p. 192-198, jul./set. 2015

Chemical characterization of the pulp, peel and seeds of cocona (Solanum sessiliflorum Dunal)

SERNA-COCK, L. et al.

1 Introduction

The agroindustrialisation of fruits generates many 

residues, represented in most cases by the peel and 

seeds, which, when discarded into the environment, 

cause problems that may include putrefaction, unpleasant 

odours, landscape deterioration, the contamination of soil 

and water bodies and the spread of pests. To mitigate these 

problems, some researchers have used agroindustrial 

fruit residues to generate value-added products, such 

as residues from lemon (JANATI et al., 2012), orange 

(LLANOS et al., 2008), mango (GUZMÁN et al., 2010) 

and banana (DORMOND et al., 2011), amongst others, 

have been used in animal feeds. Pineapple residues have 

been used to produce xylose (RAMÍREZ et al., 2012) 

and synthesize lactic acid (ARAYA-CLOUTIER et al., 

2010) and fruit seeds, such as those from passion fruit, 

blackberry and lulo, have been used for the extraction 

of fatty acids (CERÓN et al., 2012). Residues from the 

agroindustrialization of tangerines are suitable for the 

extraction of essential oils (NAVARRETE et al., 2010), and 

guava seeds have been used to produce ethanol and 

lactic acid (SERNA et al., 2013a, b).

Other research has attempted to identify means 

to increase the value of residues generated during the 

processing of fruit, by transforming seeds and peels 

into nutraceutical products or natural preservatives 

(ALZATE et al., 2011), which are used in food products 

and are beneficial to consumer health.

Some agroindustrial residues have been used to 

generate other types of value-added products, such as, 

for example, cellulose nanofibers, obtained from sugar 

cane bagasse and used to reinforce the polymer matrices 

of high-density polyethylene and polypropylene (ESPITIA, 

2010). Ethanol has been obtained from sugar cane and 

corn residues (CARDONA et al., 2005), vegetable residues 

(FONSECA; MATURANA, 2010), coffee mucilage (RUIZ; 

ARIAS, 2001) and chicken feathers (SERNA et al., 2013c), 

amongst other sources.

The physical and chemical characterization of both 

the whole fruits and the fruit residues generated during 

their agroindustrialization is crucial to finding innovative 

value-added uses for these residues.

Cocona (Solanum sessiliflorum Dunal) is a fruit with 

an exotic flavour which is indigenous to the Amazon region 

and used by the natives and inhabitants of this region for 

food, medicine and cosmetics (QUIJANO; PINO, 2006). 

Furthermore, this fruit is highly regarded for the preparation 

of jellies, jams, pasta, pickles and sweets (ARGOTE at al., 

2013). Cocona seed and peel residues with agroindustrial 

potential are generated during the artisanal processing. 

Therefore, the aim of the present study was to determine 

the agroindustrial potential of cocona pulp, peel and seeds 

by characterizing the physicochemical properties of these 

three fruit components. This potential was determined 

from the yields of the following components; minerals, 

sugars, protein, fat, soluble and insoluble dietary fibre, 

ascorbic acid and soluble solids; and their digestibility, 

acidity and pH.



2 Material and methods

2.1 Obtaining the fruits

Ecotype II cocona fruits, reddish brown in colour, 

with a ripeness degree of 5 were used (AGRONET, 2006). 

The cocona fruits originated from non-technified cultivars 

in Puerto Caicedo, Putumayo Department, Colombia. The 

fruits were washed with 200 ppm sodium hypochlorite and 

dried with absorbent paper.

2.2 Characterization of the pulp, peel and seeds

Forty fruits were used for the characterization. Their 

peels were removed with a conventional kitchen peeler, 

and the samples of pulp and seeds obtained using a 

pulper (Philips model HR1764, Brazil). Each of the three 

fruit samples (pulp, peel and seeds) was weighed on a 

precision balance (Denver APX-323, Fisher Scientific

Pittsburgh, PA, USA) and the percent yield of pulp, peel 

and seed calculated using Equation 1.

=

1



0

W

Yield



x100

W

  



(1)

where W

0

 is the average weight of 40 cocona fruits and W



1

 

is the average weight of the pulp, peel or seeds obtained 



from these fruits.

In addition, the concentration of each component 

with respect to the whole fruit was calculated using 

Equation 2.

(

)

=



 % d.b. x D.M.

Yield


Concentration

 x 


 

100


100

  

(2)



where % d.b. is the dry basis percentage of a component, 

% D.M is the dry matter of each component and Yield is 

the pulp, peel or seed yield.

The pulp, peel and seed samples obtained from 

the 40 fruits were divided into two batches, each of which 

was weighed on the Denver APX-323 precision scale. 

One  batch was maintained in the fresh state and the other 

dried at 65 °C in a convection oven (model Ed 115 UL, 

Binder Labortechnik, Tuttlingen, Germany). The dried 

samples were ground in a mill (Fritsch, Idar-Oberstein, 

Germany) at 8000 rpm using a 1-mm sieve and stored in 

plastic bags at 25 °C until further use.

The Wendee analysis was carried out on each type 

of fruit sample, determining the following parameters: the 

percentage of dry matter (HELRICH, 1990a, b) method 

934.06; ash content, method 942.05 using a muffle furnace 



http://bjft.ital.sp.gov.br

194


Braz. J. Food Technol., Campinas v. 18, n. 3, p. 192-198, jul./set. 2015

Chemical characterization of the pulp, peel and seeds of cocona (Solanum sessiliflorum Dunal)

SERNA-COCK, L. et al.

(model 550-58, Fisher Scientific, USA); protein content 

(Kjeldahl method, Helrich (1990c, d), method 32.1.22; 

ether-extractable content, method 920.39; cellulose, 

hemicellulose and lignin contents (Van Soest Analysis) 

Cunniff (1997), method 973.18; dietary fibre (HORWITZ, 

2000b), method 978.10 – enzymatic technique); and in 

vitro digestibility (HORWITZ, 2000b), method 971.09 – 

enzymatic and gravimetric technique).

The fresh samples were used to determine other 

physicochemical properties, including total soluble solids 

(TSS) (HELRICH, 1990e), method 932.12 using a digital 

refractometer (model AR200, Reichert Technologies, 

Depew, NY, USA), pH by a potentiometric method 

(SevenEasy S30 conductivity meter, Mettler-Toledo, 

Schwerzenbach, Switzerland), total titratable acidity 

(TTA) (HORWITZ, 2000a), method 942.15A, expressed as 

percentage of citric acid. In addition, the ascorbic acid 

content was determined using an assay kit (Reflectoquant 

RQflex 10, Merck, Darmstadt, Germany).

Regarding the mineral content, phosphorus and 

boron were determined by ultraviolet-visible spectroscopy 

(UV-Vis) (DAWSON, 1986); and potassium, calcium, 

magnesium, sodium and trace elements, such as copper, 

iron, zinc and magnesium, were determined by atomic 

absorption spectroscopy (VARGA; KOLODZIEJ, 1974).

The analyses were carried out with 2 replicates 

and expressed as the percentage (% d.b.) and g/100 g 

of the whole fruit, considering the performance of each 

component in the fruit.



3 Results and discussion

The yields of pulp, peel and seeds were 64%, 

26.3% and 9.7%, respectively. These results for yield 

indicated that in the agroindustrialisation of cocona fruit, 

each ton of fresh fruit processed in an artisan way yields 

0.64 tons of pulp and 0.36 tons of residues, represented 

by peel and seed. These yields are consistent with those 

of Barbosa-Pires et al. (2006), who indicated that this fruit 

generated approximately 30% residues.

The whole fruit contained 10.94% dry matter 

and carbohydrates were the primary component of the 

pulp, peel and seeds (Table 1). Considering the yield 

of each component of the fresh fruit (Table 1), the pulp 

and peel were observed to contribute similar amounts of 

carbohydrate and the peel and seeds contributed similar 

amounts of protein.

Of the fruit fractions, the pulp contributed the 

greatest amount of dry matter, ash, protein and 

carbohydrates.

One hundred grams of the seeds were found to 

contain more dry matter, protein and ether-extractable 

contents than were found in 100 g of either the pulp or 

peel. The protein content of the peel was quite similar to 

that of the pulp.

Yuyama et al. (2007) determined the chemical 

composition (d.b.) of the pulp in eight varieties of cocona 

from the Manaus region (Brazil) and found levels of protein 

between 4.8% and 7%, carbohydrates between 51% and 

81% and ether-extractable contents between 3.4% and 

20%. The results of the present study, corresponding to 

cocona crops from the Colombian Amazon region, are in 

the same ranges as described by YUYAMA et al. However, 

the studies on cocona pulp by Barbosa-Pires et al. (2006) 

reported higher values for protein, ether-extractable 

content, ash and carbohydrates than those obtained in 

the present study. Similarly, Marx et al. (1998) reported 

a higher dry matter content in cocona pulp than that 

obtained in the present study (9.5%).

A comparison of the dry matter and protein contents 

of cocona pulp with those of the pulps of other Amazonian 

fruits, showed that cocona had 80% more dry matter 

than arazá and the same amount of protein as cupuaçu 

(ROGEZ et al., 2004). However acai (Euterpe oleraceae 

Mart.), had higher protein and ether-extractable contents 

than cocona (GORDON et al., 2012).

Reports on the chemical composition of cocona 

peel and seeds were not found in the scientific literature.

Table 1.

 Proximate and Van Soest analysis of Cocona fruit (Solanum sessiliflorum Dunal).



Component

Pulp

Peel

Seed



(d.b.)

g/100 g of 

whole fruit



(d.b.)

g/100 g of 

whole fruit



(d.b.)

g/100 g of 

whole fruit

Proximate 

Analysis

Dry matter

7.27


4.65

13.41


3.53

23.46


2.28

Ash

10.14


0.47

4.80


0.17

3.62


0.08

Protein

*

8.74



0.41

8.38


0.30

15.08


0.34

Ether extractable content

6.37


0.30

0.97


0.03

11.93


0.27

Carbohydrates

74.75


3.48

85.85


3.03

69.37


1.58

Van Soest



Cellulose

8.27


0.38

12.58


0.44

30.81


0.70

Hemicellulose

5.26


0.24

4.04


0.14

21.90


0.50

Lignin

2.41


0.11

16.36


0.58

14.40


0.33

*Conversion factor 6.25.



http://bjft.ital.sp.gov.br

195


Braz. J. Food Technol., Campinas v. 18, n. 3, p. 192-198, jul./set. 2015

Chemical characterization of the pulp, peel and seeds of cocona (Solanum sessiliflorum Dunal)

SERNA-COCK, L. et al.

The carbohydrate and protein contents of cocona 

peel and seeds indicate that these residues from the 

artisanal agroindustry are usable sources of carbon 

and nitrogen as substrates for organic fermentation. It is 

well known that the fermentation industry uses inorganic 

sources of nitrogen in industrial-scale fermentations 

(RODRÍGUEZ; PIÑEROS, 2009), and this resource has 

become a limiting factor for the production of organic 

products obtained by fermentation.

Barbosa-Pires et al. (2006) proposed using the 

by-products of pulped cocona in the preparation of candy, 

which is commercialized in some areas of Brazil.

The agroindustrial potential and economic viability 

of a fruit depend, in part, on its moisture content, with 

the most promising materials showing higher dry matter 

contents (YUYAMA et al., 2007). Thus the dry matter, 

protein and carbohydrate contents of cocona seeds 

make this residue ideal for developing value-added 

products. Conversely, the high moisture content of the 

peel (86.59%) and pulp (92.73%) make these products 

susceptible to enzymatic and microbiological changes 

(BARRETO et al., 2009). Therefore, an alternative for 

cocona pulp and peel would be dehydration by freeze 

drying or some other drying method. Authors such as 

Silva et al. (2010) suggest that the best alternative for 

the agroindustrialisation of products with high moisture 

contents is dehydration, because drying increases the 

shelf life and reduces packaging and transportation costs 

due to the reduced weight.

Nutritionally, the major component in cocona is 

carbohydrate, which is primarily found in the pulp and 

peel of the fruit. According to Yuyama et al. (2007) and 

Silva et al. (2010), the carbohydrate concentration is 

directly linked to the energy value of the fruit, indicating 

that cocona and its by-products could be used in diets for 

overweight or obese people or those with certain energy 

restrictions. The significance of fruit carbohydrates arises 

from their relatively high proportion of dietary fibre and 

cell wall fibre, which decrease the absorption rate of fruit 

sugars, resulting in a lower glycaemic response. It is 

thus recommended that fruit consumption be increased 

to maintain health and protect against certain diseases, 

including diabetes, cancer and cardiovascular disease 

(DURÁN et al., 2012).

Table 1 shows the results for the Van Soest 

analysis (hemicellulose, cellulose and lignin). The peels 

contained the highest lignin content (16.36 g/100 g), and 

the seeds the highest cellulose content (30.81 g/100 g). 

The seeds and pulp contributed the most dietary fibre, 

in similar amounts (13.61 and 13.18 g/100 g of whole 

fruit). Yuyama et al. (2012) found lower values for total 

dietary fibre in cocona pulp and peel, at 1.68 g/100 g, 

and 4.38 g/100 g, respectively. The dietary fibre content 

of cocona pulp was higher than that reported for other 

Amazonian fruits, such as acai (5.92 g/100 g) and 

camu-camu (0.57 g/100 g).

Similarly, cocona peel and seeds (50.15 and 68.12%, 

respectively) have significant dietary fibre when compared 

with passion fruit seeds (64.8%) (CHAU; HUANG, 2004), 

mango pulp (44.7%) (AJILA et al., 2007) and Persian lime 

peel (66.7%) (UBANDO-RIVERA et al., 2005). This similarity 

shows that cocona fruit, including its agroindustrialization 

residues, can be an important supplement to the human 

diet, providing significant amounts of dietary fibre, which 

is of great interest from a nutritional standpoint. Moreover, 

because of their soluble and insoluble dietary fibre 

contents, each of the components can be used to formulate 

prebiotic tablets that are beneficial in preventing colon 

cancer. The components can also be used in slimming 

formulations because the water-retaining capacity of 

dietary fibre (especially soluble fibre) is well known for 

increasing satiety and decreasing nutrient absorption 

time (GRIGELMO-MIGUEL; MARTIN-BELLOSO, 1999; 

YUYAMA et al., 2012). In addition, the components can 

be included in natural formulations to prevent increases in 

blood cholesterol, because a relationship has been proven 

between the consumption of dietary fibre and decreases in 

the intestinal absorption of cholesterol (AJILA et al., 2007).

Table 2 shows the mineral contents of the cocona 

pulp, peel and seeds. The analysis of the mineral 

composition of the cocona fruit indicated that the element 

potassium was found in relatively high proportions in the 

three fruit components.

The potassium content of cocona is due to 

fertilization and the Amazon soil type (SILVA-FILHO et al., 

2005) and that reported in the present study is consistent 

with that reported by Barbosa-Pires et al. (2006) and 

Silva-Filho et al. (2005), who found that the potassium 

content of cocona fruits was high when compared with the 

iron, calcium, phosphorus, magnesium and zinc contents. 

The ingestion of large amounts of potassium protects 

against hypertension; the recommended minimum 

potassium intake per person per day being 2g (MIGUEL; 

SARMIENTO, 2009), which can be found in citrus fruits, 

tomatoes, cabbage and cocona.

Of the microelements, iron was the mineral found in 

the greatest proportion in the three cocona components, 

although the seeds provided more than the pulp or peel. 

Similarly, the seeds contained more of other minerals, 

such as Ca, Zn, Mn and P. In general, of the whole fruit, 

the pulp provided the highest mineral content.

The mineral concentrations found in the three 

fruit components suggest that cocona could be used to 

formulate dietary supplements for consumption by people 

requiring a Na-restricted diet.

Barbosa-Pires et al. (2006) found higher Ca 

(13.68 mg/100 g), Mg (17.49 mg/100 g), K (35.79  mg/100 g) 



http://bjft.ital.sp.gov.br

196


Braz. J. Food Technol., Campinas v. 18, n. 3, p. 192-198, jul./set. 2015

Chemical characterization of the pulp, peel and seeds of cocona (Solanum sessiliflorum Dunal)

SERNA-COCK, L. et al.

and P (21.27 mg/100 g) contents in cocona pulp than 

those reported in the present study. The differences in 

trace elements found between the present study and that 

of Barbosa-Pires et al. (2006) are due to variability in soil 

and climatic conditions (crop location, solar cycle and 

climate) (BARRETO et al., 2009).

Cocona pulp has more K and P than that of cupuaçu 

(Theobroma grandiflorum) (1.37 and 0.06 mg/100 g of 

pulp respectively (ROGEZ et al., 2004).

Table 3 shows the results for ascorbic acid, 

pH, total solids and titratable acidity (citric acid). 

The ascorbic acid content was higher than that reported 

by Barreto et al. (2009), who found values of 3% for cocona 

pulp. The ascorbic acid content of cocona pulp makes 

the fruit a good source of antioxidants, which can prevent 

the cell damage caused by oxidation and hence the pulp 

could be used in the formulation of antioxidant complexes. 

Barbosa-Pires et al. (2006) reported a pH of 4.12, total 

solids of 6.12% and an ascorbic acid concentration of 

1.92 mg/100 g for cocona pulp.

The in vitro digestibility of the cocona peel and 

pulp was 55.38% and 81.33%, respectively, showing that 

these products could be easily digested. The digestibility 

of the seeds was much lower (27.99%). These results 

indicated that both the pulp and the peel of cocona 

could be used as food for humans, and one option for 

their easy consumption could be the incorporation of 

these two components in the freeze-dried form, as crispy 

additives to breakfast cereals. These additives would 

improve the prebiotic features of breakfast cereals, which 

are considered to have massive consumption worldwide.

Cocona seeds transformed into cocona flour by 

drying and grinding could be marketed as a prebiotic 

product. Such a flour would be a healthy choice in 

formulations for human consumption, because the 

unabsorbed fraction would increase faecal matter, with 

the consequent trapping of toxins (YUYAMA et al., 2012).

The microbial modification of the lignocellulosic 

residues of cocona peels and seeds is another promising 

alternative for the production of more digestible foods for 

human or animal consumption. These materials could be 

used as a source of carbon and nitrogen in fermentation 

substrates, considering that the fermentation industry uses 

inorganic sources of nitrogen for fermentation, a use that 

constitutes a well-known limiting factor for the production 

of organic products obtained by fermentation.

4 Conclusions

Cocona seed is ideal for developing value-added 

products because of its high contents of dry matter, 

carbohydrate, fat, protein, Fe, Ca, Zn, Mn, P and dietary 

fibre. Cocona peel and pulp provide similar amounts of 

carbohydrates and proteins. The pulp and seed provide 

similar amounts of dietary fibre. Therefore, both cocona 

pulp and the residues generated in the artisanal cocona 

agroindustry have a variety of potential uses. The mineral 

concentrations found in the three cocona components 

make them suitable for use in dietary supplements. 

Table 2.

 Mineral content of cocona (Solanum sessiliflorum Dunal).



Component

Pulp

Peel

Seed



(d.b.)

mg/100g of 

whole fruit



(d.b.)

mg/100g of 

whole fruit



(d.b.)

mg/100g of 

whole fruit

Ca

0.0070


0.3257

0.0060


0.2116

0.0080


0.1820

Mg

0.0040


0.1861

0.0040


0.1411

0.0100


0.2276

K

0.1150


5.3507

0.0400


1.4107

0.0230


0.5234

P

0.0030


0.1396

0.0010


0.0353

0.0020


0.0455

Na

N.D.


N.D.

N.D.


N.D.

N.D.


N.D.

Cu

0.0003


0.0140

0.0003


0.0110

0.0003


0.0062

Zn

0.0000


0.0001

N.D.


N.D.

0.0008


0.0192

Mn

0.0004


0.0189

0.0004


0.0135

0.0012


0.0275

Fe

0.0064


0.2982

0.0022


0.0769

0.0185


0.4212

B

0.0017


0.0786

0.0014


0.0497

0.0019


0.0435

ND = not detectable.



Table 3.

 Chemical properties of cocona components (Solanum sessiliflorum Dunal).



Parameter

Pulp

Peel

Seeds

Ascorbic acid (%)

3.51 ± 0.33



< 1.5%

< 1.5%

pH

3.31 ± 0.01

4.09 ± 0.015

5.69 ± 0.14



Total soluble solids (%)

6.30 ± 0.3



< 0.5%

1.3 ± 0.2



Citric acid (%)

1.91 ± 0.01



< 0.1%

0.04 ± 0.003



http://bjft.ital.sp.gov.br

197


Braz. J. Food Technol., Campinas v. 18, n. 3, p. 192-198, jul./set. 2015

Chemical characterization of the pulp, peel and seeds of cocona (Solanum sessiliflorum Dunal)

SERNA-COCK, L. et al.

The ascorbic acid content of the cocona pulp makes the 

fruit a good source of antioxidants useful for preventing 

the cell damage caused by oxidation.



References

AGRONET.  Share business. 2006. Available from:

agronet.com>. Access in: 18 oct. 2012.

AJILA, C. M.; BHAT, S. G.; PRASADA RAO, U. J. Valuable 

components of raw and ripe peels from two Indian mango 

varieties. Food Chemistry, London, v. 102, n. 4, p. 1006-1011, 

2007. http://dx.doi.org/10.1016/j.foodchem.2006.06.036.

ALZATE, L.; ARTEAGA, D.; JARAMILLO, Y. Evaluation to potential 

uses of the carob tree’s fruit (Hymenaea Courbaryl L.) -shel and 

seeds- as a natural preserver for food. Revista Lasallista de 



Investigación

, Caldas, v. 8, n. 1, p. 90-95, 2011.

ARAYA-CLOUTIER, C.; ROJAS-GARBANZO, C.; VELÁZQUEZ-

CARILLO, C. Síntesis de ácido láctico, a través de la hidrólisis 

enzimática simultanea a la fermentación de un medio a base 

de un desecho de piña (Ananas comosus), para su uso como 

materia prima en la elaboración de ácido poliláctico. Revista 

Iberoamericana de Polímeros

, Bilbao, v. 11, n. 7, p. 407-416, 

2010.

ARGOTE F. E., VARGAS D. P., VILLADA H. S. Investigación 



de mercado sobre el grado de aceptación de mermelada de 

cocona en Sibundoy, Putumayo. Revista Científica Guillermo 



de Ockham

, Colombia, v. 11, n. 2, p. 197-206, 2013.

BARBOSA-PIRES, A. M.; SANTIAGO, P.; MOREIRA, P.; GOMES, 

J. C.; MOTA, A. Caracterização e processamento de cubiu 

(Solanum sessiliflorum). Ceres, Viçosa, v. 53, n. 307, p. 309-316, 

2006.


BARRETO, G.; BENASSI, M.; MERCADANTE, A. Bioactive 

compounds from several tropical fruits and correlation by 

multivariate analysis to free radical scavenger activity. Journal 

of the Brazilian Chemical Society

, Campinas, v. 20, n. 

10, p. 1856-1861, 2009. http://dx.doi.org/10.1590/S0103-

50532009001000013.

CARDONA, C.; SÁNCHEZ, O.; MONTOYA, M.; QUINTERO, J. 

Producción de atenol carburante: material lignocelulósico una 

nueva alternativa. Ingeniería de recursos naturales y del 

ambiente

, Cali, v. 2, n. 1, p. 47-55, 2005.

CERÓN, A.; OSORIO, O.; HURTADO, A. Identificación de ácidos 

grasos contenidos en los aceites extraídos a partir de semillas 

de tres diferentes especies de frutas. Acta Agronomica, Bogotá, 

v. 61, n. 2, p. 126-132, 2012.

CHAU, C. F.; HUANG, Y. L. Characterization of passion fruit 

seed fibres: a potential fibre source. Food Chemistry, London, 

v. 85, n. 2, p. 189-194, 2004. http://dx.doi.org/10.1016/j.

foodchem.2003.05.009.

CUNNIFF, P. (Ed.). Fiber (acid detergent) and lignin in animal 

feed (Method 973.18). In: CUNNIFF, P. (Ed.). Official methods 



of analysis of the Association Of Official Analytical Chemists

16th ed. Gaithersburg: AOAC, 1997.



DAWSON, J. B. Analytical atomic spectroscopy in biology and 

medicine. Fresenius Journal of Analytical Chemistry, Berlin, 

v. 324, n.  5, p. 463-471, 1986.

DORMOND, H.; ROJAS, A.; BOSCHINI, C.; MORA, G.; SIBAJA, 

G. Evaluación preliminar de la cáscara de banano maduro como 

material de ensilaje, en combinación con pasto King Grass 

(Pennisetum purpureum). Revista electrónica de las sedes 

regionales de la Universidad de Costa Rica

, Costa Rica, v. 

12, n. 23, p. 17-31, 2011.

DURÁN, S.; CARRASCO, E.; ARAYA, M. Food and diabetes. 



Nutrición Hospitalaria

, España, v. 27, n. 4, p. 1031-1036, 2012.

ESPITIA, H. Aislamiento de nanofibras de ceulosa a partir 

de residuos agroindustriales de fique y caña de azúcar, 

con potencial aplicación en reforzamiento de polímeros 

termoplásticos

. 2010. 58 f. Disertación (Maestría en Ciencias 

- Química)-Facultad de Ciencias, Universidad Nacional de 

Colombia, Medellin, 2010.

FONSECA, E.; MATURANA, G. Aprovechamiento de los residuos 

vegetales de una central de abastos para la obtención de etanol. 



Revista Épsilon

, Bogotá, n. 14, p. 21-31, 2010.

GORDON, A.; GIL, A. P.; CORREA, L. M.; CORDEIRO, S.; 

ARAUJO, C. M.; MARINO, C.; ANDRADE, R.; FRIEDRICH, F.; 

MARTINS, V.; MARX, F. Chemical characterization and evaluation 

of antioxidant properties of Açaí fruits (Euterpe oleraceae Mart.) 

during ripening. Food Chemistry, London, v. 133, p. 256-263, 

2012.


GRIGELMO-MIGUEL, N.; MARTIN-BELLOSO, O. Comparison of 

dietary fiber from by-products of processing fruits and greens 

and from cereals. Food Science and Technology, London, v. 32, 

n. 8, p. 503-508, 1999. http://dx.doi.org/10.1006/fstl.1999.0587.

GUZMÁN, O.; LEMUS, C.; BUGARIN, J.; BONILLA, J.; LY, J. 

Ensilado de residuos de mango (mangifera indica L.) para la 

alimentación animal: características fermentativas. Revista 

computadorizada de producción porcina

, La Habana, v. 17, 

n. 3, p. 218-24, 2010.

HELRICH, K. (Ed.). Moisture in dried fruits (Method 934.06). 

In: HELRICH, K. (Ed.). Official methods of analysis of the 

Association Of Official Analytical Chemists

. 15th ed. 

Arlington: AOAC, 1990a. p. 911-12.

HELRICH, K. (Ed.). Cenizas (Method 942.05). In: HELRICH, 

K. (Ed.). Official methods of analysis of the Association of 

Official Analytical Chemists

. 15th ed. Arlington: AOAC, 1990b.

HELRICH, K. (Ed.). Método Kjeldhal (Method 32.1.22). In: 

HELRICH, K. (Ed.). Official methods of analysis of the 



Association of Official Analytical Chemists

. 15th ed. Arlington: 

AOAC, 1990c.


http://bjft.ital.sp.gov.br

198


Braz. J. Food Technol., Campinas v. 18, n. 3, p. 192-198, jul./set. 2015

Chemical characterization of the pulp, peel and seeds of cocona (Solanum sessiliflorum Dunal)

SERNA-COCK, L. et al.

HELRICH, K. (Ed.). Ethereal extract (Method 920.39). In: 

HELRICH, K. (Ed.). Official methods of analysis of the 

Association of Official Analytical Chemists

. 15th ed. Arlington: 

AOAC, 1990d.

HELRICH, K. (Ed.). Total soluble solids (Method 932.12). 

In: HELRICH, K. (Ed.). Official methods of analysis of the 

Association of Official Analytical Chemists

. 15th ed. Arlington: 

AOAC, 1990e.

HORWITZ, W. (Ed.). Fruits and fruit products: acidity (titratable) of 

fruit products. (Method 942.15A). In: HORWITZ, W. (Ed.). Official 

methods of analysis of the Association of Official Analytical 

Chemists

. 17th ed. Gaithersburg: AOAC, 2000a.

HORWITZ, W. (Ed.).Official methods of analysis of Association 

of Official Analytical Chemists

. 17th ed. Gaithersburg: AOAC, 

2000b.

JANATI, S.; BEHESHTI, H.; FEIZY, J.; FAHIM, N. Chemical 



composition of lemon (Citrus limon) and peels: its considerations 

as animal food. GIDA, Mashhad, v. 37, n. 5, p. 267-71, 2012.

LLANOS, D.; MOSQUERA, D.; CUBA, F. Ensiling potential of 

orange fruit wastes (Citrus sinensis). Revista Ciencias técnicas 



agropecuarias

, La Habana, v. 17, n.2, p. 41-44, 2008.

MARX, F.; ANDRADE, E. H. A.; MAIA, J. G. Chemical 

composition of the fruit of Solanum sessiliflorum. Zeitschrift fur 



Lebensmitteluntersuchung und Forschung A

, Berlin, v. 206, n. 

5, p. 364-366, 1998. http://dx.doi.org/10.1007/s002170050274.

MIGUEL, P. E.; SARMIENTO, Y. Hipertensión arterial, un enemigo 

peligroso. Acimed, La Habana, v. 20, n. 3, p. 92-100, 2009.

NAVARRETE, C.; GIL, J.; DURANGO, D.; GARCIA, C. Extracción 

y caracterización del aceite esencial de mandarina obtenido 

de residuos agroindustriales. Dyna, Medellín, v. 77, n. 162, p. 

85-92, 2010.

QUIJANO, C.; PINO, J. Change in volatile constituents during the 

ripening of cocona (Solanum sessiliflorum Dunal) fruit. Revista 

CENIC Ciencias Químicas

, Cuba, v. 37, n. 3, p. 133-136, 2006.

RAMÍREZ, K.; ROJAS, O.; ALVARADO, P.; VEGA-BUDRIT, J. 

Obtención de xilosa a partir de desechos lignocelulósicos de la 

producción y proceso industrial de la piña (Ananas comusus). 

Uniciencia

, Argentina, v. 26, n. 1-2, p. 75-89, 2012.

RODRÍGUEZ, I.; PIÑEROS, Y. Production of enzymatic complex 

in solid state fermentation by Trichoderma sp. using palm oil 

empty fruit palm oil bunch (EFB) as substrate. Vitae, Medellín, 

v. 14, n. 2, 2009.

ROGEZ, H.; BUXANT, R.; MIGNOLET, E.; SOUZA, J.; SILVA, E.M.; 

LARONDELLE, Y. Chemical composition of the pulp of three 

typical Amazonian fruits: araca-boi (Eugenia stipitata), bacuri 

(Platonia insignis) and cupuacu (Theobroma grandiflorum). 



European Food Research and Technology

, Berlin, v. 218, n. 

4, p. 380-384, 2004.

RUIZ, A.; ARIAS, E. Fermentación alcohólica de mucílago de 

café con levaduras. Ciencia y Tecnología de los Alimentos

Medellín, v. 11, n. 1, p. 66-74, 2001.

SERNA, L.; JOSÉ, M.; ANGULO, J.; GÓMEZ A. Kinetics of 

alcoholic fermentation using guava (Psidium guajava) seed 

flour and dry mycelium of Aspergillus niger as nitrogen sources. 

Dyna

, Medellín, v. 80, n. 180, p. 113-121, 2013b.

SERNA, L.; MERA, D.; ANGULO, J.; GÓMEZ, A. Cinética de 

fermentación alcohólica utilizando como fuente de nitrógeno 

harina de semilla de guayaba Psidium guajava. In: SIMPOSIO 

INTERNACIONAL DE BIOFÁBRICAS, 5., CONGRESO 

INTERNACIONAL DE FLUJOS REACTIVOS, 1., 2013, Medellín. 

Anales…

 Medellín: Universidad Nacional de Colombia, 2013a. 

p. 21-22.

SERNA, L.; ROJAS, M.; RENGIFO, C. Hidrolizado de plumas de 

gallina como fuente de peptona para la producción de biomasa 

láctica. Vitae, Medellín, v. 19, n. 1, p. 162-164, 2013c.

SILVA, M. F.; LOPES, J. P.; AMARAL, F. C.; OZAKI, L. K. 

Processamento e avaliação da farinha de cubiu em diferentes 

condiçoes de armazenamento. In: REUNIÃO ANUAL DA SBPC, 

62., 2010, Natal. Anais… São Paulo: SBPC, 2010. p. 1-4.

SILVA-FILHO, D. F.; YUYAMA, L. K.; AGUIAR, J. P.; OLIVEIRA, 

M. C.; MARTINS, L. H. Caracterização e avaliação do potencial 

agronômico e nutricional de etnovariedades de cubiu (Solanum 

sessiliflorum Dunal) da Amazônia. Acta Amazonica, Manaus, 

v. 35, n. 4, p. 399-406, 2005. http://dx.doi.org/10.1590/S0044-

59672005000400003.

UBANDO-RIVERA, J.; NAVARRO, A.; VALDIVIA, M. Mexican 

lime peel: comparative study on contents of dietary fibre and 

associated antioxidant activity. Food Chemistry, London, 

v. 89, n. 1, p. 57-61, 2005. http://dx.doi.org/10.1016/j.

foodchem.2004.01.076.

VARGA, F. J.; KOLODZIEJ, B. J. The copper, iron, zinc, 

magnesium, manganese, and calcium content of the western 

basin of Lake Erie. The Ohio Journal of Science, Ohio, v. 74, 

n. 5, p. 325-329, 1974.

YUYAMA, L. O.; MACEDO, S.; AGUIAR, J.; FILHO, D. S.; 

YUYAMA, K.; FAVARO, D.; VASCONCELLOS, M. Quantificação 

de macro e micro nutrientes em algumas etnovariedades de 

cubiu (Solanum sessiliflorum Dunal). Acta Amazonica, Manaus, 

v. 37, n. 3, p. 425-430, 2007. http://dx.doi.org/10.1590/S0044-

59672007000300014.

YUYAMA, L.; BARROS, S. E.; AGUIAR, J.; YUYAMA, K.; FILHO, 

D. Quantificacao de fibra alimentar em algunas populacoes de 

Cubiu (Solanum sessiliflorum Dunal), Camu Camu (Myrciaria 

dubia (H.B.K) Mc Vaugh) e Acai (Euterpe Oleracea Mart). Acta 

Amazonica

, Manaus, v. 32, n. 3, p. 491-497, 2012. http://dx.doi.



org/10.1590/1809-43922002323467.


Yüklə 0,7 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2020
rəhbərliyinə müraciət

    Ana səhifə