Curriculum Vitae Xu xiao personal



Yüklə 60,5 Kb.
tarix27.08.2017
ölçüsü60,5 Kb.
Curriculum Vitae

Xu XIAO


Personal

Address: A.J. Drexel Nanomaterials Institute, Materials Science and Engineering, Drexel University, 3141 Chestnut Street,

Philadelphia, PA 19104

Tel: +1-(215)512-8229

E-mail: xx58@drexel.edu; xu.xiao1989@gmail.com

Education Background

Huazhong University of Science and Technology 2007.09-2011.07


  • Bachelor, School of Physics

Huazhong University of Science and Technology 2011.07-2016. 06

Supervisor: Prof. Jun Zhou

  • Visiting student, Drexel University, Supervisor: Prof. Yury Gogotsi (2013)

Drexel University 2016.12-now

  • Postdoc researcher, Supervisor: Prof. Yury Gogotsi. Research on new 2D metal nitrides and caribides.

Research Experience

Regulation of the electron/ion transport of metal oxide for energy storage

The main issue of metal oxide is the poor electron conductivity and ion diffusion which largely hinder the performance. With understanding deeper of this field, my aim is to fundamentally address the electron/ion transport. The carrier of n-type metal oxide is electron. I thought if I can tune the carrier density, the electron conductivity would be enhanced radically. By use of in-situ doping and hydrogenation, we could control and introduce oxygen vacancies in the oxide and largely improve the electron conductivity. Largely enhanced electrochemical performances were achieved after these regulations. I also systematically study the influence of surface functional group on electron/ion conductivity and tune the ratio of different groups to obtain the highest performance.

Besides, the energy storage mechanism of some oxide (for example, MoO3) is intercalation, ions must be stored in the interlayer of oxide. Considering that the interlayer distance of oxide is not large enough, I developed a method to pre-inserted K+ in the interlayer of MoO3, which increased the distance of interlayer and solve the ion transport issue. Interestingly, such an interlayer-enhanced material could be directly used in large ions electrolyte-even sea water (the first report in literature).

Development of a scalable and general method for two-dimensional metal oxide (even nonlayered structure)

If all of the active atoms could be exposed to the electrolyte, the ion transport issue could be thoroughly solved. In this way, I developed a scalable and general method to obtain high quality and large size (100 μm) 2D oxide even with nonlayered structure (such as h-MoO3, h-WO3, MoO2 and MnO), which solves the disadvantages of both vacuum (CVD, high quality but low amount) and solution (large amount but sometimes low quality and need surfactant) method. Using 2D h-MoO3 as the example, we could achieve the theoretical capacitance (996 C/g) at a high sweep rate which means very fast ions transport speed. Interestingly, we found that 2D h-MoO3 showed a unique property in Al-electrolyte with the largest volumetric capacitance (300 F/cm3) compared to literature, indicating the potential in Al-ions battery.



Development of self-powered systems

I have developed a high mass-loading freestanding electrode and fabricated the flexible solid-state SCs. Combined with solar cells and triboelectric generators, we could collect the micro energy from environment and store into flexible solid-state SCs to drive electronic devices, resulting in a self-powered system.



Research on nanosensors

Fabrication of a semi-transparent high-strain sensor based on ZnO/polymer hybrid film, which can measure and withstand strain up to 50%.



Honors

  • Outstanding graduate of Huazhong University of Science and Technology 2016

  • National Scholarship 2014

  • “Top Ten Graduate in Science” of Huazhong University of Science and Technology 2013

  • “Best Student Paper Award” of The 6th International Photonics and OptoElectronics Meetings 2013

  • National Scholarship 2012

  • “Three Goods” graduate of Huazhong University of Science and Technology 2012

Publications

Cited times: 2404, h-index 17. Google scholar: https://scholar.google.com.hk/citations?user=neE3h2QAAAAJ&hl=en

1. Xiao, X.; Yu, H.; Jin, H.; Wu, M.; Fang, Y.; Sun, J.; Hu, Z.; Li, T.; Wu, J.; Huang, L.; Gogotsi, Y.; Zhou, J. Salt-templated Synthesis of 2D Metallic MoN and Other Nitrides, ACS Nano, 2017, DOI: 10.1021/acsnano.6b08534.

2. Xiao, X.; Song, H.; Lin, S.; Zhou, Y.; Zhan, X.; Hu, Z.; Zhang, Q.; Sun, J.; Yang, B.; Li, T.; Jiao, L.; Zhou, J.; Tang, J.; Gogotsi, Y. Scalable Salt-Templated Synthesis of 2D Transition Metal Oxides. Nat. Commun., 2016, 7, 11296. (Reports and mentions by 23 news articles, such as Materials Today, Nanowerk, Science Daily, Yahoo…)

3. Xiao, X.; Yuan, L.; Zhong, J.; Ding, T.; Liu, Y.; Cai, Z.; Rong, Y.; Han, H.; Zhou, J.; Wang, Z. L., High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films. Adv. Mater. 2011, 23, 5440-5444. (cited times: 124, ESI highly cited paper)

4. Xiao, X.; Peng, X.; Jin, H.; Li, T.; Zhang, C.; Gao, B.; Yuan, L.; Hu, B.; Huo, K.; Zhou, J., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 2013, 25, 5091-5097. (cited times: 115, ESI highly cited paper)

5. Yuan, L.†; Xiao, X.†; Ding, T.; Zhong, J.; Zhang, X.; Shen, Y.; Hu, B.; Huang, Y.; Zhou, J.; Wang, Z. L., Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 2012, 51, 4934-4938. (co-first author) (cited times: 180, ESI highly cited paper)

6. Xiao, X.; Ding, T.; Yuan, L.; Shen, Y.; Zhong, Q.; Zhang, X.; Cao, Y.; Hu, B.; Zhai, T.; Gong, L.; Chen, J.; Tong, Y.; Zhou, J.; Wang, Z. L., WO3−x/MoO3−x Core/Shell Nanowires on Carbon Fabric as an Anode for All-Solid-State Asymmetric Supercapacitors. Adv. Energy Mater. 2012, 2, 1328-1332. (cited times: 133, ESI highly cited paper)

7. Xiao, X.; Li, T.; Yang, P.; Gao, Y.; Jin, H.; Ni, W.; Zhan, W.; Zhang, X.; Cao, Y.; Zhong, J.; Gong, L.; Yen, W.-C.; Mai, W.; Chen, J.; Huo, K.; Chueh, Y.-L.; Wang, Z. L.; Zhou, J., Fiber Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems. ACS Nano 2012, 6, 9200-9206. (cited times: 201, ESI highly cited paper)

8. Xiao, X.; Li, T.; Peng, Z.; Jin, H.; Zhong, Q.; Hu, Q.; Yao, B.; Luo, Q.; Zhang, C.; Gong, L.; Chen, J.; Gogotsi, Y.; Zhou, J., Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 2013, 6, 1-9. (cited times: 56, ESI highly cited paper, reported by Materials Today)

9. Xiao, X.; Peng, Z.; Chen, C.; Zhang, C.; Beidaghi, M.; Yang, Z.; Wu, N.; Huang, Y.; Miao, L.; Gogotsi, Y.; Zhou, J., Freestanding MoO3−x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 2014, 9, 355-363. (cited times: 23)

10. Xiao, X.; Zhang, C.; Lin, S.; Huang, L.; Hu, Z.; Cheng, Y.; Li, T.; Qiao, W.; Long, D.; Huang, Y.; Mai, L.; Gogotsi, Y.; Zhou, J., Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors. Energy Storage Mater. 2015, 1, 1-8. (cited times: 10)

11. Xu, D. F.†; Xiao, X.†; Cai, J.; Zhou, J.; Zhang, L. N., Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. J. Mater. Chem. A 2015, 3, 16424-16429. (co-first author)

12. Zhang, Q.†; Xiao, X.†; Zhao, R.; Lv, D.; Xu, G.; Lu, Z.; Sun, L.; Lin, S.; Gao, X.; Zhou, J.; Jin, C.; Ding, F.; Jiao, L., Two-Dimensional Layered Heterostructures Synthesized from Core-Shell Nanowires. Angew. Chem. Int. Ed. 2015, 54, 8957-8960. (co-first author) (cited times: 4)

13. Hu, Z.†; Xiao, X.†; Huang, L.; Chen, C.; Li, T.; Su, T.; Cheng, X.; Miao, L.; Zhang, Y.; Zhou, J., 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale 2015, 7, 16094-16099. (co-first author) (cited times: 1)

14. Zhang, X.; Gong, L.; Liu, K.; Cao, Y.; Xiao, X.; Sun, W.; Hu, X.; Gao, Y.; Chen, J.; Zhou, J.; Wang, Z. L., Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode. Adv. Mater. 2010, 22, 5292-5296. (cited times: 67, ESI highly cited paper)

15. Yuan, L.; Lu, X. H.; Xiao, X.; Zhai, T.; Dai, J.; Zhang, F.; Hu, B.; Wang, X.; Gong, L.; Chen, J.; Hu, C.; Tong, Y.; Zhou, J.; Wang, Z. L., Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 2012, 6, 656-661. (cited times: 426, ESI hot paper, report and comment by Rodney Ruoff on Chemical & Engineering news)

16. Yang, P., Xiao, X., Li, Y., Ding, Y., Qiang, P., Tan, X., Mai, W., Lin, Z., Wu, W., Li, T., Jin. H., Liu, P., Zhou, J., Wong, C. P., Wang, Z. L., Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems. ACS Nano 2013, 7, 2617-2626. (cited times: 289, ESI highly cited paper)

17. Yao, B.; Yuan, L.; Xiao, X.; Zhang, J.; Qi, Y.; Zhou, J.; Zhou, J.; Hu, B.; Chen, W.; Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2013, 2, 1071-1078. (cited times: 61)

18. Hu, Z.; Xiao, X.; Chen, C.; Li, T.; Huang, L.; Zhang, C.; Su, J.; Miao, L.; Jiang, J.; Zhang, Y.; Zhou, J.; Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy 2015, 11,226-234. (cited times: 22)

19. Cheng, Y.; Huang, L.; Xiao, X.; Yao, B.; Yuan, L.; Li, T.; Hu, Z.; Wang, B.; Wan, J.; Zhou, J., Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 2015, 15, 66-74. (cited times: 16)

20. Ge, D.; Yang, L.; Fan, L.; Zhang, C.; Xiao, X.; Gogotsi, Y.; Yang, S., Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 2015, 11, 568-578. (cited times: 16)

21. Huang, L.; Gao, X.; Dong, Q.; Hu, Z. M.; Xiao, X.; Li, T. Q.; Cheng, Y. L.; Yao, B.; Wan, J.; Ding, D.; Ling, Z.; Qiu, J. S.; Zhou, J., HxMoO3-y nanobelts with sea water as electrolyte for high-performance pseudocapacitors and desalination devices. J. Mater. Chem. A 2015, 3, 17217-17223.

22. Luo, Q.-P.; Huang, L.; Gao, X.; Cheng, Y.; Yao, B.; Hu, Z.; Wan, J.; Xiao, X.; Zhou, J., Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Nanotechnology 2015, 26, 304004. (cited times: 5)

23. Sun, Y.; Sills, R. B.; Hu, X.; Seh, Z. W.; Xiao, X.; Xu, H.; Luo, W.; Jin, H.; Xin, Y.; Li, T.; Zhang, Z.; Zhou, J.; Cai, W.; Huang, Y.; Cui, Y., A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. Nano Lett. 2015, 15, 3899-906. (cited times: 17)

24. Li, T.; Beidaghi, M.; Xiao, X.; Huang, L.; Hu, Z.; Sun, W.; Chen, X.; Gogotsi, Y.; Zhou, J., Ethanol reduced molybdenum trioxide for Li-ion capacitors. Nano Energy 2016, 10.1016/j.nanoen.2016.05.004.

25. Yao, B.; Huang, L.; Zhang, J.; Gao, X.; Wu, J.; Cheng, Y.; Xiao, X.; Wang, B.; Li, Y.; Zhou, J., Flexible Transparent Molybdenum Trioxide Nanopaper for Energy Storage. Adv. Mater. 2016, 10.1002/adma.201600529.

26. Zhang, C.; Beidaghi, M.; Naguib, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Dyatkin, B.; Cook, K. M.; Kim, S. J.; Eng, B.; Xiao, X.; Long, D.; Qiao, W.; Dunn, B.; Gogotsi, Y., Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. Chem. Mater. 2016, 10.1021/acs.chemmater.6b01244.



27. Jun Wan, Xu Yao, Xiang Gao, Xu Xiao, Tianqi Li, Jiabin Wu, Wanmei Sun, Zhimi Hu, Huimin Yu, Liang Huang, Meilin Liu, Jun Zhou, Microwave Combustion for Modification of Transition Metal Oxides. Adv. Func. Mater. 2016, 26, 7263-7270.

Yüklə 60,5 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2020
rəhbərliyinə müraciət

    Ana səhifə