Государственный комитет Республики Узбекистан



Yüklə 0,7 Mb.
səhifə1/11
tarix07.01.2024
ölçüsü0,7 Mb.
#204902
  1   2   3   4   5   6   7   8   9   10   11
Монография



Groundwater Resource Evaluation
In the first seven chapters of this book we have examined the physical and chemical principles that govern groundwater flow and we have investigated the interrelationships that exist between the geological environment, the hydrologic cycle, and natural groundwater flow. In this chapter and the two that follow, we will turn to the interactions between groundwater and man. We will look at the utilization of groundwater as a resource, we will examine its role as an agent for subsurface contamination, and we will assess the part it plays in a variety of geotechnical problems.
8.1 Development of Groundwater Resources
Exploration, Evaluation, and Exploitation
The development of groundwater resources can be viewed as a sequential process with three major phases. First, there is an exploration stage, in which surface and subsurface geological and geophysical techniques are brought to bear on the search for suitable aquifers. Second, there is an evaluation stage that encompasses the measurement of hydrogeologic parameters, the design and analysis of wells, and the calculation of aquifer yields. Third, there is an exploitation, or management phase, which must include consideration of optimal development strategies and an assessment of the interactions between groundwater exploitation and the regional hydrologic system.
It is worth placing these three phases in a historical perspective in North America and Europe, nearly all major aquifers have already been located and are being used to some extent. The era of true exploration for regional aquifers is over. We are now in a period in which detailed evaluation of known aquifers and careful management of known resources will take on greater importance. The layout of this chapter reflects this interpretation of current needs. We will treat aquifer exploration in a single section, and place heavier emphasis on the evaluation and management stages.
Let us assume that we have located an aquifer that has some apparent potential. The scope of groundwater resource evaluation and management studies might best be indicated by the following series of questions:

  1. Where should the wells be located? How many wells are needed? What pumping rates can they sustain?

  2. What will be the effect of the proposed pumping scheme on regional water levels?

  3. What are the long-term yield capabilities of the aquifer?

  4. Will the proposed development have any detrimental influence on other components of the hydrologic cycle?

  5. Are there likely to be any undesirable side effects of development, such as land subsidence or seawater intrusion, that could serve to limit yields?

This chapter is designed to provide the methodology needed to answer questions of this type. The measurement and estimation of hydrogeologic parameters is treated in Sections 8.4 through 8.7. Predictions of drawdown in an aquifer under a proposed pumping scheme can be carried out for simple situations with the analytical methods presented in Section 8.3. More complex hydrogeological environments may require the application of numerical-simulation techniques, as presented in Section 8.8, or electrical-analog techniques, as presented in Section 8.9. Land subsidence is discussed in Section 8.12, and seawater intrusion in Section 8.13.
Well Yield, Aquifer Yield, and Basin Yield
The techniques of groundwater resource evaluation require an understanding of the concept of groundwater yield, and, perhaps surprisingly, this turns out to be a difficult and ambiguous term/to address. The concept is certainly pertinent, in that one of the primary objectives of most groundwater resource studies is the determination of the maximum possible pumping rates that are compatible with the hydrogeologic environment from which the water will be taken. This need for compatibility implies that yields must be viewed in terms of a balance between the benefits of groundwater pumpage and the undesirable changes that will be induced by such pumpage. The most ubiquitous change that results from pumping is lowered water levels, so in the simplest cases groundwater yield can be defined in terms of the maximum rate of pumpage that can be allowed while ensuring that water-level declines are kept within acceptable limits.
This concept of yield can be applied on several scales. If our unit of study is a single well, we can define a well yield; if our unit of study is an aquifer, we can define an aquifer yield; and if our unit of study is a groundwater basin, we can define a basin yield. Well yield can be defined as the maximum pumping rate that can be supplied by a well without lowering the water level in the well below the pump intake. Aquifer yield can be defined as the maximum rate of withdrawal that can be sustained by an aquifer without causing an unacceptable decline in the hydraulic head in the aquifer. Basin yield can be defined as the maximum rate of withdrawal that can be sustained by the complete hydrogeologic system in a groundwater basin without causing unacceptable declines in hydraulic head in the system or causing unacceptable changes to any other component of the hydrologic cycle in the basin. In light of the effects of well interference that are discussed in Section 8.3, it is clear that aquifer yield is highly dependent on the number and spacing of wells tapping an aquifer. If all the wells in a highly developed aquifer pump at a rate equal to their well yield, it is likely that the aquifer yield will be exceeded. In light of the effects of aquitard leakage and aquifer interference that are also discussed in Section 8.3, it is clear that basin yield is highly dependent on the number and spacing of exploited aquifers in a basin. If all the aquifers are pumped at a rate equal to their aquifer yield, it is likely that the basin yield will be exceeded.
These simple concepts should prove useful to the reader in the early sections of this chapter. However, the concept of basin yield deserves reconsideration in greater depth, and this is presented in Section 8.10.
8.2 Exploration for Aquifers
An aquifer is a geological formation that is capable of yielding economic quantities of water to man through wells. It must be porous, permeable, and saturated. While aquifers can take many forms within the wide variety of existing hydrogeological environments, a perusal of the permeability and porosity data of Tables 2.2 and 2.4 and consideration of the discussions of Chapter 4 make it clear that certain geological deposits are of recurring interest as aquifers. Among the most common are unconsolidated sands and gravels of alluvial, glacial, lacustrine, and deltaic origin; sedimentary rocks, especially limestones and dolomites, and sandstones and conglomerates; and porous or fractured volcanic rocks. In most cases, aquifer exploration becomes a search for one or other of these types of geological deposits. The methods of exploration can be grouped under four headings: surface geological, subsurface geological, surface geophysical, and subsurface geophysical.
Surface Geological Methods
The initial steps in a groundwater exploration program are carried out in the office rather than in the field. Much can be learned from an examination of available maps, reports, and data. There are published geologic maps on some scale for almost all of North America; there are published soils maps or surficial geology maps for most areas; and there are published hydrogeological maps for some areas. Geologic maps and reports provide the hydrogeologist with an initial indication of the rock formations in an area, together with their stratigraphic and structural interrelationships. Soils maps or surficial geology maps, together with topographic maps, provide an introduction to the distribution and genesis of the surficial unconsolidated deposits and their associated landforms. Hydrogeologic maps provide a summarized interpretation of the topographic, geologic, hydrogeologic, geochemical, and water resource data available in an area.
Airphoto interpretation is also widely used in groundwater exploration. It is usually possible to prepare maps of landforms, soils, land use, vegetation, and drainage from the airphoto coverage of an area. Each of these environmental properties leads to inferences about the natural groundwater flow systems and/or the presence of potential aquifers. Way (1973) and Mollard (1973) each provide a handbook-style treatment of airphoto-interpretation methods, and both include a large number of interpreted photos, many of which illustrate significant hydrogeological features.
However, even in areas where there is a considerable amount of published information, it is usually necessary to carry out geologic mapping in the field. In view of the importance of unconsolidated sands and gravels as potential aquifers, special attention must be paid to geomorphic landforms and to the distribution of glacial and alluvial deposits. Where sand and gravel deposits are sparse, or where these deposits are shallow and unsaturated, more detailed attention must be paid to the lithology, stratigraphy, and structure of the bedrock formations.
The methods of hydrogeologic mapping outlined in Section 6.1 are useful in determining the scale and depth of natural groundwater flow systems and in mapping the extent of their recharge and discharge areas.
Subsurface Geological Methods
It is seldom sufficient to look only at the surficial manifestations of a hydrogeological environment. It is unlikely that subsurface stratigraphic relationships will be fully revealed without direct subsurface investigation. Once again, the initial step usually involves scanning the available records. Many state and provincial governments now require that geological logs of all water wells be filed in a central bank for the use of other investigators. These data, while varying widely in quality, can often provide the hydrogeologist with considerable information on past successes and failures in a given region.
In most exploration programs, especially those for large-scale industrial or municipal water supplies, it is necessary to carry out test-drilling to better delineate subsurface conditions. Test holes provide the opportunity for geological and geophysical logging and for the coring or sampling of geological materials. Test holes can also be used to obtain water samples for chemical analysis and to indicate the elevation of the water table at a site. Test-drilling programs, together with published geological maps and available well-log records, can be interpreted in terms of the local and regional lithology, stratigraphy, and structure. Their logs can be used to prepare stratigraphic cross sections, geological fence diagrams, isopach maps of overburden thickness or formation thickness, and lithofacies maps. Hydrogeological interpretations might include water-table contours and isopachs of saturated thickness of unconfined aquifers. The results of chemical analyses of groundwater samples, when graphically displayed using the methods of Chapter 7, can provide important evidence on the natural geochemical environment as well as a direct measure of water quality.
Surface Geophysical Methods
There are two regional geophysical techniques that are used to some extent in the exploration for aquifers. These are the seismic refraction method and the electrical resistivity method. The design of geophysical surveys that utilize these approaches, and the interpretation of the resulting geophysical measurements, is a specialized branch of the earth sciences. It is not expected that a groundwater hydrologist become such a specialist, and for this reason our discussion is brief. On the other hand, it is necessary that the hydrogeologist be aware of the power and limitations of the methods. If this brief presentation fails to meet that objective, the reader is directed to a standard geophysics textbook such as Dobrin (1960), or to one of several review papers that deal specifically with geophysical applications in groundwater exploration, such as McDonald and Wantland (1961), Hobson (1967), or Lennox and Carlson (1967).
The seismic refraction method is based on the fact that elastic waves travel through different earth materials at different velocities. The denser the material, the higher the wave velocity. When elastic waves cross a geologic boundary between two formations with different elastic properties, the velocity of wave propagation changes and the wave paths are refracted according to Snell’s law. In seismic exploration, elastic waves are initiated by an energy source, usually a small explosion, at the ground surface. A set of receivers, called geophones, is set up in a line radiating outward from the energy source. Waves initiated at the surface and refracted at the critical angle by a high-velocity layer at depth will reach the more distant geophones more quickly than waves that travel directly through the low velocity surface layer. The time between the shock and the arrival of the elastic wave at a geophone is recorded on a seismograph. A set of seismograph records can be used to derive a graph of arrival time versus distance from shot point to geophone, and this, in turn, with the aid of some simple theory, can be used to calculate layer depths and their seismic velocities.
In groundwater investigations the seismic refraction method has been used to determine such features as the depth to bedrock, the presence of buried bedrock channels, the thickness of surficial fracture zones in crystalline rock, and the areal extent of potential aquifers. The interpretations are most reliable in cases where there is a simple two-layer or three-layer geological configuration in which the layers exhibit a strong contrast in seismic velocity. The velocities of the layers must increase with depth; the method cannot pick up a low-velocity layer (which might well be a porous potential aquifer) that underlies a high-velocity surface layer. The depth of penetration of the seismic method depends on the strength of the energy source. For shallow investigations (say, up to 30 m) hydrogeologists have often employed hammer seismic methods, in which the energy source is simply a hammer blow on a steel plate set on the ground surface.
The electrical resistivity of a geological formation is defined as ρ = RA/L, where R is the resistance to electrical current for a unit block of cross-sectional area A and length L. The resistivity controls the gradient in electrical potential that will be set up in a formation under the influence of an applied current. In a saturated rock or soil, the resistivity is largely dependent on the density and porosity of the material and on the salinity of the saturating fluid. In an electrical resistivity survey an electric current is passed into the ground through a pair of current electrodes and the potential drop is measured across a pair of potential electrodes. The spacing of the electrodes controls the depth of penetration. At each setup an apparent resistivity is calculated on the basis of the measured potential drop, the applied current, and the electrode spacing. Sets of measurements are taken either in the form of lateral profiling or depth profiling. In lateral profiling the electrode spacing is kept constant as electrodes are leapfrogged down a survey line. This method provides areal coverage at a given depth of penetration. It can be used to define aquifer limits or to map areal variations in groundwater salinity. In depth profiling a series of readings is taken at different electrode spacings at a single station. Apparent resistivities are plotted against electrode spacing, and stratigraphic interpretations are made by comparing the resulting curve against published theoretical curves for simple layered geometries. Depth profiling has been widely used to determine the thickness of sand and gravel aquifers that overlie bedrock. It can also be used to locate the saltwater-freshwater interface in coastal aquifers. It is often claimed that the method can “feel” the water table, but this is questionable except in very homogeneous deposits. In urban areas the method is often hampered by the presence of pipes, rails, and wires that interfere with the current fields.
Surface geophysical methods cannot replace test drilling, although by providing data that lead to a more intelligent selection of test-hole drilling, they may lead to a reduction in the amount of drilling required. Stratigraphic interpretations based on seismic or electrical resistivity measurements must be calibrated against test-hole information.
Subsurface Geophysical Methods
There is one geophysical approach that has now become a standard tool in groundwater exploration. This approach involves the logging of wells and test holes by the methods of borehole geophysics. The term encompasses all techniques in which a sensing device is lowered into a hole in order to make a record that can be interpreted in terms of the characteristics of the geologic formations and their contained fluids. The techniques of borehole geophysics were originally developed in the petroleum industry and the standard textbooks on the interpretation of geophysical logs (Pirson, 1963; Wyllie, 1963) emphasize petroleum applications. Fortunately, there are several excellent review articles (Jones and Skibitzke, 1956; Patton and Bennett, 1963; Keys, 1967, 1968) that deal specifically with the application of geophysical logging techniques to groundwater problems.
A complete borehole geophysics program as it is carried out in the petroleum industry usually includes two electric logs (spontaneous potential and resistivity), three radiation logs (natural gamma, neutron, and gamma-gamma), and a caliper log that indicates variations in hole diameter. In hydrogeological applications, emphasis is usually placed on the electric logs.
The simplest electric log is the spontaneous potential (or self-potential) log. It is obtained with the single-point electrode arrangement shown in Figure 8.1 with the current source disconnected. It provides a measure of the naturally occurring potential differences between the surface electrode and the borehole electrode. The origin of these natural electric potentials is not well understood, but they are apparently related to electrochemical interactions that take place between the borehole fluid and the in situ rock-water complex.
Figure 8.1 Single-point electrode arrangement for spontaneous potential and resistivity logging in a borehole.
The second electric log is a resistivity log. There are several electrode arrangements that can be used, but the simplest and the one most widely used in the water well industry is the single-point arrangement shown in Figure 8.1. The potential difference recorded at different depths for a given current strength leads to a log of apparent resistivity versus depth.
The two electric logs can be jointly interpreted in a qualitative sense in terms of the stratigraphic sequence in the hole. Figure 8.2 shows a pair of single-point electric logs measured in a test hole in an unconsolidated sequence of Pleistocene and Upper Cretaceous sediments in Saskatchewan. The geologic descriptions and the geologic log in the center are based on a core-sampling program.
Figure 8.2 Geologic log, electric logs, geologic description, and hydrologic description of a test hole in Saskatchewan (after Christiansen et al., 1971).
The hydrologic description of the potential aquifers at the site is based on a joint interpretation of the geologic and geophysical logs. In most common geological environments, the best water-yielding zones have the highest resistivities. Electric logs often provide the most accurate detail for the selection of well-screen settings.
Dyck et al. (1972) pointed out three disadvantages to single-point electric logs. They do not provide quantitative values of formation resistivity; they are affected by hole diameter and borehole fluid resistivity; and they have only a shallow radius of investigation. To emphasize the first point, the resistivity log on Figure 8.2 records simply the resistance measured between the two electrodes rather than an apparent resistivity. Multiple-point electric logs are more versatile. They can be used for quantitative calculations of the resistivity of formation rocks and their enclosed fluids. These calculations lie beyond the scope of this presentation. Campbell and Lehr (1973) provide a good summary of the techniques. Dyck et al. (1972) provide some sample calculations in the context of a groundwater exploration program.
Keys (1967, 1968) has suggested that radiation logs, especially the natural gamma log, may have applications to groundwater hydrology. A logging suite that might be considered complete for hydrogeological purposes would include a driller’s log (including drilling rate), a geologic log, a spontaneous potential log, a resistivity log, a natural gamma log, and a caliper log.
Drilling and Installation of Wells and Piezometers
The drilling of piezometers and wells, and their design, construction, and maintenance, is a specialized technology that rests only in part on scientific and engineering principles. There are many books (Briggs and Fiedler, 1966; Gibson and Singer, 1971; Campbell and Lehr, 1973; U.S. Environmental Protection Agency, 1973a, 1976) that provide a comprehensive treatment of water well technology. In addition, Walton (1970) presents material on the technical aspects of groundwater hydrology, and his text includes many case histories of water well installations and evaluations. Reeve (1965), Hvorslev (1951), Campbell and Lehr (1973), and Kruseman and de Ridder (1970) discuss methods of piezometer construction and installation. In this text we will limit ourselves to a brief overview of these admittedly important practical matters. Most of what follows is drawn from Campbell and Lehr (1973).
Water wells are usually classified on the basis of their method of construction. Wells may be dug by hand, driven or jetted in the form of well points, bored by an earth auger, or drilled by a drilling rig. The selection of the method of construction hinges on such questions as the purpose of the well, the hydrogeological environment, the quantity of water required, the depth and diameter envisaged, and economic factors. Dug, bored, jetted and driven wells are limited to shallow depths, unconsolidated deposits, and relatively small yields. For deeper, more productive wells in unconsolidated deposits, and for all wells in rock, drilling is the only feasible approach.
There are three main types of drilling equipment: cable toolrotary, and reverse rotary. The cable tool drills by lifting and dropping a string of tools suspended on a cable. The bit at the bottom of the tool string rotates a few degrees between each stroke so that the cutting face of the bit strikes a different area of the hole bottom with each stroke. Drilling is periodically interrupted to bail out the cuttings. With medium- to high-capacity rigs, 40- to 60-cm-diameter holes can be drilled to depths of several hundred meters and smaller diameter holes to greater depths. The cable-tool approach is successful over a wide range of geological materials, but it is not capable of drilling as quickly or as deeply as rotary methods. With the conventional rotary method, drilling fluid is forced down the inside of a rapidly rotating drill stem and out through openings in the bit. The drilling fluid flows back to the surface, carrying the drill cuttings with it, by way of the annulus formed between the outside of the drill pipe and the hole wall. In a reverse rotary system, the direction of circulation is reversed. Reverse rotary is particularly well suited to drilling large-diameter holes in soft, unconsolidated formations.
The conventional rotary rig is generally considered to be the fastest, most convenient, and least expensive system to operate, especially in unconsolidated deposits. Penetration rates for rotary rigs depend on such mechanical factors as the weight, type, diameter, and condition of the bit, and its speed of rotation; the circulation rate of the drilling fluid and its properties; and the physical characteristics of the geological formation. In rock formations, drillability (defined as depth of penetration per revolution) is directly related to the compressive strength of the rock.
The direct rotary method is heavily dependent on its hydraulic circulation system. The most widely used drilling fluid is a suspension of bentonitic clay in water, known as drilling mud. During drilling, the mud coats the hole wall and in so doing contributes to the hole stability and prevents losses of the drilling fluid to permeable formations. When even heavy drilling mud cannot prevent the caving of hole walls, well casing must be emplaced as drilling proceeds. Caving, lost circulation, and conditions associated with the encounter of flowing artesian water constitute the most common drilling problems.
The design of a deep-cased well in an unconsolidated aquifer must include consideration of the surface housing, the casing, the pumping equipment, and the intake. Of these, it is the intake that is most often of primary concern to groundwater hydrologists. In the first half of this century it was quite common to provide access for the water to the well by a set of perforations or hand-sawn slots in the casing. It is now recognized that well yields can be significantly increased by the use of well screens. The size of the intake slots in a properly designed well screen is related to the grain-size distribution of the aquifer. Development of a screened well by pumping, surging, or backwashing draws the lines out of the aquifer, through the well screen, and up to the surface. By removing the lines from the formation in the vicinity of the well, a natural gravel pack is created around the screen that increases the efficiency of the intake. In some cases, an artificial gravel pack is emplaced to improve intake properties. Figure 8.3 shows several typical designs for wells in consolidated and unconsolidated formations.
Figure 8.3 Typical well designs for consolidated and unconsolidated formations.
The productivity of a well is often expressed in terms of the specific capacityCs, which is defined as Cs = Qhw, where Q is the pumping rate and Δhw is the drawdown in the well. In this equation, Δhw = Δh + ΔhL, where Δh is the drawdown in hydraulic head in the aquifer at the well screen boundary, and ΔhL is the well loss created by the turbulent flow of water through the screen and into the pump intake. Δh is calculated from the standard well-hydraulics equations developed in Section 8.3. ΔhL can be estimated by methods outlined in Walton (1970) and Campbell and Lehr (1973). In general, ΔhL   Δh.
8.3 The Response of ldeal Aquifers to Pumping
The exploitation of a groundwater basin leads to water-level declines that serve to limit yields. One of the primary goals of groundwater resource evaluation must therefore be the prediction of hydraulic-head drawdowns in aquifers under proposed pumping schemes. In this section, the theoretical response of idealized aquifers to pumping will be examined. We will investigate several types of aquifer configuration, but in each case the geometry will be sufficiently regular and the boundary conditions sufficiently simple to allow the development of an analytical solution to the boundary-value problem that represents the case at hand. These solutions, together with solutions to more complex boundary-value problems that describe less ideal conditions, constitute the foundation of the study of well hydraulics. This section provides an introduction to the topic, but the material covered is far from all-inclusive. There is a massive literature in the field and the committed reader is directed to Walton’s (1970) comprehensive treatment, to Hantush’s (1964) monograph, or to the excellent handbooks of Ferris et al. (1962) and Kruseman and de Ridder (1970).
Radial Flow to a Well
The theoretical analyses are based on an understanding of the physics of flow toward a well during pumping. All the necessary concepts have been introduced in Chapter 2. The distinction between confined and unconfined aquifers was explained there, as was the relation between the general concept of hydraulic head in a three-dimensional geologic system and the specific concept of the potentiometric surface on a two-dimensional, horizontal, confined aquifer. Definitions were presented for the fundamental hydrogeologic parameters: hydraulic conductivityporosity, and compressibility; and for the derived aquifer parameters: transmissivity and storativity. It was explained there that pumping induces horizontal hydraulic gradients toward a well, and as a result hydraulic heads are decreased in the aquifer around a well during pumping. What is required now is that we take these fundamental concepts, put them into the form of a boundary-value problem that represents flow to a well in an aquifer, and examine the theoretical response.
At this point it is worth recalling from Section 2.10 that the definition of storativity invokes a one-dimensional concept of aquifer compressibility. The α in Eq. (2.63) is the aquifer compressibility in the vertical direction. The analyses that follow in effect assume that changes in effective stress induced by aquifer pumping are much larger in the vertical direction than in the horizontal.
The concept of aquifer storage inherent in the storativity term also implies an instantaneous release of water from any elemental volume in the system as the head drops in that element.
Let us begin our analysis with the simplest possible aquifer configuration. Consider an aquifer that is (1) horizontal, (2) confined between impermeable formations on top and bottom, (3) infinite in horizontal extent, (4) of constant thickness, and (5) homogeneous and isotropic with respect to its hydrogeological parameters.
For the purposes of our initial analysis, let us further limit our ideal system as follows: (1) there is only a single pumping well in the aquifer, (2) the pumping rate is constant with time, (3) the well diameter is infinitesimally small, (4) the well penetrates the entire aquifer, and (5) the hydraulic head in the aquifer prior to pumping is uniform throughout the aquifer.
The partial differential equation that describes saturated flow in two horizontal dimensions in a confined aquifer with transmissivity T and storativity S was developed in Section 2.11 as Eq. (2.77):

Since it is clear that hydraulic-head drawdowns around a well will possess radial symmetry in our ideal system, it is advantageous to convert Eq. (2.77) into radial coordinates. The conversion is accomplished through the relation   and the equation of flow becomes (Jacob, 1950)
(8.1)
The mathematical region of flow, as illustrated in the plan view of Figure 8.4, is a horizontal one-dimensional line through the aquifer, from r = 0 at the well to r = ∞ at the infinite extremity.
Figure 8.4 Radial flow to a well in a horizontal confined aquifer.
The initial condition is

Yüklə 0,7 Mb.

Dostları ilə paylaş:
  1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin