INTEGRALLASHNING ASOSIY USULLARI Differensial ostiga kiritish usuli. O‘rniga qo‘yish (o‘zgaruvchini almashtirish) usuli. Bo‘laklab intеgrallash usuli 7.2.1. Aniqmas integralda x o‘zgaruvchidan boshqa u u(x) o‘zgaruvchiga o‘tish orqali f (x)dx integralni jadval integraliga keltirib integrallash usuliga differensial ostiga kiritish usuli deyiladi. Bu usulda f (u)du d ( f (u)) formulaga asoslangan quyidagi almashtirishlar keng qo‘llaniladi: du d(u a), ( ), 1 d au b a du ( ), 2 1 2 udu d u cosudu d(sin u), sin udu d(cosu), (ln ), 1 du d u u ( ), cos 1 2 du d tgu u (arcsin ) 1 1 2 du d u u , ( ) 1 1 2 du d arctgu u , a,b o‘zgarmas sonlar. 303 1 misol. Integrallarni differensial ostiga kiritish usuli bilan toping: 1) ; 16 9 2 x dx 2) ; 2 e xdx x 3) ; 1 2 3 dx x arctg x 4) . sin cos cos sin dx x x x x 1) C u arctg u du x d x x dx 4 4 1 3 1 3 4 1 16 (3 ) (3 ) 3 1 16 9 2 2 2 2 . 4 3 12 1 C x arctg 2) . 2 1 2 1 2 1 ( ) 2 2 1 2 2 2 e xdx e d x e du e C e C x x u u x 3) . 4 1 4 ( ) 1 4 4 3 3 2 3 C arctg x C u dx arctg xd arctgx u du x arctg x 4) ln | | ln |sin cos | . sin cos (sin cos ) sin cos cos sin u C x x C u du x x d x x dx x x x x 7.2.2. Aniqmas integralda integral ostidagi funksiyaning bir qismini u u(x) o‘zgaruvchi bilan almashtirish orqali f (x)dx integralni integrallash qulay bo‘lgan f (u)du integralga keltirib integrallash usuliga o‘rniga qo‘yish (yoki o‘zgaruvchini almashtirish) usuli deyiladi. Bu usul f (x)dx f ((t))(t)dt (2.1) formulaga asoslanadi. Ayrim hollarda t (x) o‘rniga qo‘yish tanlashga to‘g‘ri keladi. U holda (2.1) formula o‘ngdan chapga qo‘llaniladi, ya’ni f ((x))(x)dx f (t)dt . 2 misol. Integrallarni o‘rniga qo‘yish usuli bilan toping: 1) x x 3dx; 2) 1 cos sin 2 ; 2 x xdx 3) dx x x x ln 1 ln ; 4) . 4 2 2 dx x x 1) x 3 t o‘rniga qo‘yishni bajaramiz. U holda 3, 2 . 2 x t dx tdt Shu sababli x x 3dx (t 3) t 2tdt 2 (t 3t )dt 2 4 2 ( 3) 2 ( 3) . 5 2 3 6 5 2 6 2 5 3 5 3 4 2 C x x C t t t dt t dt 304 2) 2 2 1 cos x t deymiz. U holda sin 2 2 , 1 cos . 2 x tdt t x Bundan (1 cos ) . 3 2 3 1 cos sin 2 ( 2 ) 2 2 3 3 2 C x C t x xdx t t dt 3) 2 1 ln x t bo‘lsin. Bundan ln 1, 2 , 2 tdt x dx x t t 1 ln x.U holda C t t dt t t t t dt t t tdt dx x x x 1 1 ln 2 1 2 1 1 2 1 1 2 1 2 ln 1 ln 2 2 2 2 . 1 ln 1 1 ln 1 2 1 ln ln C x x x 4) x 2sin t, dx 2costdt, 4 x 2cost 2 deymiz. Bunda . 2 arcsin x t U holda dt ctgt t C t dt dt t t dt t t dx x x 2 2 2 2 2 2 2 sin sin 1 sin sin 4 cos C x x x C x x ctg 2 arcsin 2 sin arcsin 2 1 sin arcsin 2 arcsin 2 arcsin 2 C x x x 2 arcsin 4 2 . Ba’zan bajarilgan o‘rniga qo‘yishdan so‘ng shunday integral hosil bo‘ladiki, bu integralni boshqa o‘rniga qo‘yish orqali soddalashtirish yoki jadval integraliga keltirish lozim bo‘ladi. 3 misol. (8 1) 4 1 2 2 x x dx integralni toping. t x 1 o‘rniga qo‘yishni bajaramiz. U holda 2 t dt dx va (8 1) 4 1 2 2 x x dx . (8 ) 4 1 4 1 8 2 2 2 2 2 t t tdt t t t dt Keyingi integralda 2 2 4 t z o‘rniga qo‘yishdan foydalanamiz. Bundan , 8 4 2 2 tdt zdz t z . U holda 2 2 (8 t ) 4 t tdt . 2 2 1 ( 4) 4 2 2 C z arctg z dz z z zdz 305 z ni x orqali ifodalaymiz: . 1 4 1 4 4 2 2 2 x x x z t Demak, (8 1) 4 1 2 2 x x dx . 2 4 1 2 1 2 C x x arctg 7.2.3. Aniqmas integralda integral ostidagi ifodani udv ko‘paytma shaklida ifodalash va udv uv vdu (2.2) formulani qo‘llash orqali f (x)dx integralni integrallash qulay bo‘lgan vdu integralga keltirib topish usuliga bo‘laklab integrallash usuli deyiladi. Bo‘laklab integrallash usuli bilan topiladigan integrallarni asosan uch guruhga ajratish mumkin: P x arctgxdx ( ) , P(x)arcctgxdx, P(x)ln xdx, P(x)arcsin xdx , P(x) arccos xdx (bu yerda P(x) ko‘phad) ko‘rinishdagi 1-guruh integrallari. Bunda dv P(x)dx deb olish va qolgan ko‘paytuvchilarni u orqali belgilash qulay; P(x)e dx, kx P(x)sin kxdx, P(x)cos kxdx ko‘rinishdagi 2-guruh integrallari. Ularni topishda u P(x) va qolgan ko‘paytuvchilarni dv deb olish maqsadga muvofiq; e sin kxdx, kx e kxdx kx cos ko‘rinishdagi 3-guruh integrallari (2.2) formulani takroran qo‘llash orqali topiladi. 4 misol. Integrallarni bo‘laklab integrallash usuli bilan toping: 1) arctgxdx; 2) xdx 2 ln ; 3) sin 2 ; 2 x xdx 4) e cos xdx. x 1) arctgxdx integral 1- guruhga kiradi. U holda dx x x xarctgx dx dv v x x dx arctgx u du arctgxdx 2 2 1 , , 1 , ln1 . 2 1 1 (1 ) 2 1 2 2 2 dx xarctgx x C x d x xarctgx 306 2) 1- guruh xdx 2 ln integraliga (2.2) formulani ketme-ket ikki marta qo’llaymiz: x x xdx dx dv v x x dx x u du x xdx ln 2 ln , ln , 2ln , ln 2 2 2 ln 2 ln 2 ln 2 ln 2 . , ln , , 2 2 x x x x dx x x x x x C dx dv v x x dx x u du 3) x sin 2xdx 2 integral 1- guruhga kiradi. U holda x x x x xdx xdx dv v x u du xdx x xdx cos2 cos2 2 1 2 cos2 sin 2 , , 2 , sin 2 2 2 2 x x x x x xdx xdx dv v x u du dx sin 2 2 1 sin 2 2 1 cos2 2 1 2 sin 2 cos2 , , , 2 cos2 . 4 1 sin 2 2 1 cos2 2 1 2 x x x x x C 4) e xdx x cos integral uchinchi guruh integrali bo’lgani sababli (2.2) formulani takroran qo‘llaymiz: x xdx dv v e u du e dx I e xdx x x x sin cos , , , cos e x e xdx x x sin sin 1 x xdx dv v e u du e dx x x cos sin , , e x e x e x x x x cos cos 1 sin 1 I x x e x 2 2 2 sin cos Bundan . sin cos 2 2 C x x I e x 307 Ko‘rsatilgan uch guruh bo‘laklab integrallanadigan barcha integrallarni o‘z ichiga olmaydi. Masalan, x xdx 2 sin integral yuqorida keltirilgan integral guruhlariga kirmaydi, lekin uni bo‘laklab integrallash usuli bilan topish mumkin: ln |sin | . , sin , sin 2 2 xctgx ctgxdx xctgx x C