Is widespread in tropical, subtropical and temperate regions of Australia



Yüklə 195,39 Kb.
Pdf görüntüsü
tarix01.08.2017
ölçüsü195,39 Kb.

Introduction

The family Myrtaceae is widespread in tropical,

subtropical and temperate regions of Australia

(Cronquist 1981), with 133 genera and > 3800 species

(Wilson et al. 2001). According to Niedenzu (1893),

this family is divided into two large subfamilies,



Myrtoideae (with bacoid fruits and opposite leaves) and

Leptospermoideae (capsular fruits and alternate leaves).

Schmid (1980) reinstated another subfamily,



Chamelaucioideae (with indehiscent capsular fruits). All

neotropical  Myrtaceae are placed in the subfamily



Myrtoideae, except the genus Tepualia (Leptospermoideae)

(Landrum & Kawasaki 1997). The species of Myrtoideae

form a single tribe, Myrteae (McVaugh 1968). Berg

(1855 – 56, 1857 – 59) divided Myrteae  into three

subtribes:  Eugeniinae (globose embryos with a short

distint radicle), Myrciinae (embryos with foliar

cotyledons and a long radicle) and Myrtinae (originally

named  Pimentiinae, reduced cotyledons and a long

radicle) (Landrum & Kawasaki 1997). 

The subtribe Myrciinae is exclusively neotropical

whereas Myrtinae and Eugeniinae are paleotropical and

reach the Mediterranean (Landrum 1981). In a recent

analysis based on ITS and  psbA-trnH sequence data,

Lucas et al. (2005) found Myrciinae to be monophyletic,

whereas the Eugeniinae and Myrtinae are paraphyletic.

The Myrciinae generally have pentamerous flowers

(tetramerous in Myrceugenia) that are isolated or

variously arranged in collateral pairs, racemes,

thyrses, thyrsoids or terminal or subterminal panicles.

The floral bud opens by detachment of the calyptre

(Calyptranthes) or by irregular tearing of the calyx

lobes (Marlierea). It can also be opened with calyx

lobes that are distinct before anthesis (Myrcia,

Gomidesia and Myrceugenia). The seed coat is

membranous or chartaceous and the embryo has two

separated and generally foliar cotyledons, with a long

radicle (Landrum & Kawasaki 1997).

Taxonomic background of Myrciinae

The circumscription of Myrciinae has undergone

numerous modifications. De Candolle (1828 in

McVaugh 1968) recognised only two genera of



MyrciinaeCalyptranthes and Myrcia. Berg (1857 – 59),

in his treatment of Brazilian Myrtaceae, accepted the

genera previously described but added eight new

genera (Aulomyrcia, Calyptromyrcia, Cerquierea,



Eugeniopsis, Gomidesia, Marlierea, Myrceugenia

and


Rubachia). Most of these genera have since been

synonymised (Table 1). McVaugh (1968) grouped the

entire family into six informal groups and recognised

six of the genera described by Berg (1855 – 56, 1857



113

KEW BULLETIN 62: 113–118 (2007)

Chromosome studies in GomidesiaMarliereaMyrceugenia

and Myrcia (Myrtaceae, subtribe Myrciinae)



Itayguara Ribeiro da Costa

1

& Eliana Regina Forni-Martins

2

Summary.

In this paper we describe the chromosome numbers of several species of Myrtaceae (subtribe Myrciinae)

from south-eastern Brazil, in order to help determine the circumscription and limits of this group. The

chromosomal counts of 20 species were obtained, 17 of which are new. The number 2n = 22 occurs in almost all of

species and genera analysed except for the polyploid species Gomidesia gaudichaudiana and two species of Myrcia,

with 2n = 44. With these results, our knowledge of the chromosome number in the subtribe Myrciinae increased

from 12 (2.2%) to 29 species (5.4%). The occurrence of 2n = 22 in species of the four genera analysed did not help

resolve taxonomic questions relating to the distinction between MyrciaMarlierea and Gomidesia. Although less

frequent in Myrciinae, polyploidy appears to have had an important role in the evolution of this family, with high

frequency in Eugeniinae (22.5% of Eugenia species) and Myrtinae (50% of the species, 75% in Psidium).



Key words

.

Chromosome number, MyrtaceaeMyrtoideae, polyploidy.

Accepted for publication October 2006.

1 Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP). Departamento de Botânica, Caixa

Postal 6109, 13083-970, Campinas, SP, Brazil. Corresponding author. E-mail: itayguara@yahoo.com

2 Departamento de Botânica, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, 13083-970, Campinas, SP, Brazil. 

© The Board of Trustees of the Royal Botanic Gardens, Kew, 2007


– 59) as “Myrcioid genera”, in addition to accepting the

genus Nothomyrcia Kausel (today Myrceugenia). Briggs

& Johnson (1979) added the genus Mitranthes to the

Myrcia alliance”. In a recent synopsis of Brazilian

species, Landrum & Kawasaki (1997) recognised

three genera of Myrtaceae CalyptranthesMyrceugenia

and  Myrcia, with the latter including Marlierea and

Gomidesia (Table 1).

Myrceugenia O. Berg has tetramerous flowers with an

open calyx and ovary with 2 – 4 locules and 2 – 20

ovules per locule. This genus presents a myrcioid

embryo and floral characters inherent to the Eugeniinae

(McVaugh 1968). According to Landrum (1981),

Myrceugenia is sometimes considered the most primitive

genus in Myrciinae with an undefined phylogenetic

position (Landrum 1981; Lucas et al. 2005). 

Myrcia DC. ex Guill. sensu  Landrum & Kawasaki

(1997) is the largest genus of the subtribe Myrciinae.

These species have paniculate inflorescences and

pentamerous flowers. According to Landrum &

Kawasaki (1997), the distinction among the genera

Marlierea, Gomidesia and Myrcia is complex, because

their circumscription is based entirely on certain

floral characters, such as the coalition of the

hypanthium and anther dehiscence. According to

Berg (1855 – 56, 1857 – 59) and McVaugh (1968),

Marlierea has closed floral buds with anthesis

occurring by a longitudinal tearing of the calyx, while



Gomidesia has a pentamerous calyx and tetralocular

anthers, with pollen sacs showing different degrees of

development and a sigmoid dehiscence. McVaugh

(1968) accepted the separation between Marlierea,



Gomidesia and Myrcia, but considered the distinction

between Myrcia and Marlierea to be arbitrarybased

on hyphanthium development and floral bud

rupture. Anthers of Gomidesia  show sigmoid

dehiscence, which is the only consistent distinction

between  Gomidesia  and  Myrcia (which has a rimose

dehiscence). The phylogenetic relationships between

Marlierea  and  Myrcia are still unclear whereas

Gomidesia may be monophyletic (Lucas et al. 2005).

Chromosome studies

In general, Myrtaceae show little variation in

chromosome number, with n = 11 occuring in most

genera across different subfamilies or tribes (Rye

1979). Most chromosome studies have been carried

out on Australian species (subfamilies Leptospermoideae

and Chamelaucioideae). Atchinson (1947) studied 47

introduced species cultivated in California (mainly

Eucalyptus  species), while Rye (1979) analysed 150

species in western Australia. Although chromosome

data have been reported for only a few species of

Myrtoideae, polyploidy apparently is an important

evolutionary process, since species and cytotypes with

multiples of x = 11 have been identified (Atchinson

1947; Costa 2004; Rye 1979). Costa & Forni-Martins

(2006a) suggested that the difficulty in identifying

Brazilian  Myrtaceae is due to hybridisation and

polyploidy during speciation, since intermediate

characters occur between related taxa.

Chromosome numbers are known for only 12

species of Myrciinae in three genera (Myrcia,



Myrceugenia and  Luma).  The genus  Luma has no

defined limits and was considered primitive by

Landrum (1981) because of its embryo characters

that show similarities to both Eugeniinae and



Myrciinae. Forni-Martins & Martins (2000) reported

the gametic chromosome number (n) of two



Myrciinae species, Myrcia bella and M. lingua to be n =

11 and presented the first records for Myrcia.

Landrum (1981), in a revision of neotropical

114

KEW BULLETIN VOL. 62(1)

© The Board of Trustees of the Royal Botanic Gardens, Kew, 2007

Table 1. Circumscription of the subtribe Myrciinae. Genera currently considered synonyms are listed in parentheses. 

De Candolle (1828)

Berg (1857)

McVaugh (1968)

Briggs & Johnson (1979)

Landrum & Kawasaki  (1997)

Myrcioideae subtribe”

“Myrcioid genera”

Myrcia alliance”

(Brazilian genera)

Aulomyrcia O. Berg 

(Myrcia)



Calyptranthes Sw.

Calyptranthes

Calyptranthes

Calyptranthes

Calyptranthes

Calyptromyrcia O. Berg

(Myrcia)



Cerquierea O. Berg 

Mitranthes O. Berg

(Gomidesia)



Eugeniopsis O. Berg 

(Marlierea)



Gomidesia O. Berg

Gomidesia

Gomidesia

Myrcia

Marlierea Cambess.

Marlierea

Marlierea

Myrcia

Myrceugenia O. Berg

Myrceugenia

Myrceugenia

Myrceugenia

Myrcia DC.

Myrcia

Myrcia

Myrcia

Myrcia

Rubachia O. Berg

Nothomyrcia Kausel 

Nothomyrcia

(Marlierea)

(Myrceugenia) (Myrceugenia)


Myrceugenia, determined the chromosome number of

six Brazilian species (M. bracteosa, M. brevipedicellata,



M. euosma, M. miersiana, M. ovata var. gracilis and M.

pilotantha  var. major)  and one Chilean species (M.

exsucca), all of which had 2n = 22. Apart from these

only two other species, M. fernandeziana and  M.



schultzei, both Chilean with n = 11, have been

recorded (Sanders et al. 1983). For Luma apiculata,

Landrum (1981) found 2n = 22 and n = 10 was

reported by Tschishow (1956 in Landrum 1986).

Until now, chromosome data has not been available

for Calyptranthes, Marlierea and Gomidesia

McVaugh (1956) considered the American

Myrtaceae a complex group in need of extensive

systematic studies. Barroso (1991) also highlighted

the need to combine biosystematic studies with

regional surveys in order to define the taxa.

The aim of this work is to determine chromosome

numbers in species of Myrciinae as part of an

investigation to establish the taxonomic relationships

among these taxa. 



Material and Methods

Twenty species of Myrciinae (Myrtaceae) were collected

in different habitats, including cerrado sensu stricto,

“campos rupestres” and forests (tropical rainforest,

semideciduous forest and gallery forest) in

southeastern Brazil (Table 2). Species and

populations were chosen based on the availability of

suitable material (floral buds and mature fruits with

seeds). Species were identified by comparison with

specimens in herbaria and literature reports and

confirmed by specialists (Marcos Sobral – UFMG and

Eve Lucas MSc. – RBG Kew). The generic division of

Berg (1855 – 1856, 1857 – 1859) and McVaugh

(1968), who considered the genera Marlierea  and



Gomidesia  to be valid, was followed. Voucher

specimens were deposited in the Herbarium at the

Universidade Estadual de Campinas (UEC) (Table 2).

For meiotic studies, floral buds were fixed in

Farmer solution (ethanol:acetic acid, 3:1, v/v) for 24

h and stored in 70% alcohol at -20°C. The cytological

preparations were obtained by squashing the anthers

in acetocarmine 1.2% (Medina & Conagin 1964).

To obtain mitotic metaphases, seeds were

germinated at a temperature of 28° – 30°C. The

radicular meristems were pre-treated with 2 mM 8-

hydroxiquinoline for 24 h, at 8°C. The roots were

fixed in Farmer solution, stored in 70% alcohol, and

stored at -20°C until slide preparations were made,

stained with Giemsa (Guerra 1983).

Slides were examined using light microscopy and

well-spread metaphase cells were photographed.

CHROMOSOME STUDIES IN MYRCIINAE



115

© The Board of Trustees of the Royal Botanic Gardens, Kew, 2007



Table 2. Species analysed and details of voucher specimens.

Genera /Species – State, Municipality, Habitat (Collector & no.)

Gomidesia

G. gaudichaudiana (DC.) O. Berg — MG, Conceição do Mato Dentro, “campo rupestre”(I. R. Costa 448)

G. eriocalyx O. Berg — MG, Conceição do Mato Dentro, “campo rupestre” (C. F. Verola 46)

G. spectabilis (DC.) O. Berg — SP, Sete Barras, Tropical Rain Forest (I. R. Costa 520)

Gomidesia sp. — SP, Atibaia, Rocky outcrop (I. R. Costa 481)

Marlierea

M. clausseniana (O. Berg) Kiaersk. — MG, Conceição do Mato Dentro, “campo rupestre” (I. R. Costa 451)

M. tomentosa Cambess. — SP, Ubatuba, Tropical Rain Forest (K. Matsumuto 800)

M. warmingiana Kiaersk. — SP, Ubatuba, Tropical Rain Forest (K. Matsumoto 836)

Myrceugenia

M. myrcioides (Cambess.) O. Berg — MG, Camanducaia, Cloud Forest (I. R. Costa 474)

M. ovata Landrum — MG, Camanducaia, Cloud Forest (I. R. Costa 475)

Myrcia

M. bella Cambess. — SP, Itirapina, Cerrado sensu stricto (I. R. Costa 423)

M. fallax (DC.) O. Berg — SP, Atibaia, Rocky outcrop (I. R. Costa 460)

M. formosiana DC. — SP, Cananéia, Tropical Rain Forest (C. Urbanetz 171)

M. laruotteana Cambess. — SP, Itirapina, Cerrado sensu stricto (I. R. Costa 466)

M. lingua DC. — SP, Itirapina, Cerrado sensu stricto (I. R. Costa 430)

M. multiflora (Lam.) DC. — SP, Atibaia, Rocky outcrop (I. R. Costa 479)

M. rostrata DC. — SP, Mogi Guaçu, Cerrado sensu stricto (I. R. Costa 482)

Myrcia sp. 1 — MG, Conceição do Mato Dentro, “campo rupestre” (C. F. Verola 33)

Myrcia sp. 2 — SP, Ubatuba, Tropical Rain Forest (K. Matsumoto 833)

Myrcia sp. 3 — RJ, Rezende, Tropical Rain Forest (L. Freitas 897)

Myrcia sp. 4 — MG, Ouro Preto, Gallery Forest (K. Matsumoto 776)

116

KEW BULLETIN VOL. 62(1)

© The Board of Trustees of the Royal Botanic Gardens, Kew, 2007

Table 3. Gametic (n) and somatic (2n) chromosome numbers for Myrtaceae species (subtribe Myrciinae). * and ** signify first

count for the species and genus, respectively.



Genus /Species 

n

2n

References

Gomidesia

G. eriocalyx (DC.) O. Berg

22**



This work

G. gaudichaudiana O. Berg

44**



This work

G. spectabilis O. Berg

11**


-

This work



Gomidesia sp.

22**



This work

Luma

Luma apiculata (DC.) Burret

22

Landrum 1981



Marlierea

M. clausseniana (Berg) Kiaersk.

11**


This work



M. tomentosa Cambess.**

22**



This work

M. warmingiana Kiaersk.**

22**



This work

Myrceugenia

M. bracteosa (DC.) Legrand & Kausel

22



Landrum 1981

M. brevipedicellata (Burret) Legrand & Kausel

11



Landrum 1981

M. euosma (O. Berg) Legrand

22



Landrum 1981

M. exsucca (DC.) O. Berg

22



Landrum 1981

M. fernandeziana (Hook. & Arn.) Johow

11



Sanders et al. 1983

M. miersiana (Gardner) Legrand & Kausel

22



Landrum 1981

M. myrcioides (Cambess.) O. Berg

22*



This work

M. ovata var. gracilis (Burret) Landrum

11

22



Landrum 1981

11



This work

M. pilotantha var. major (Legrand) Landrum

11



Landrum 1981

M. schultzei Johow

11



Sanders et al. 1983

Myrcia

M. bella Cambess.

11

22



This work

11



Forni-Martins & Martins 2000

M. fallax (DC.) O. Berg

11*


This work



M. formosiana DC.

22*



This work

M. laruotteana  Cambess.

22*



This work

M. lingua DC.

11

22



This work

11



Forni-Martins & Martins 2000

M. rostrata DC.

11*


This work



M. multiflora (Lam.) DC.

22*


This work

Myrcia sp. 1

22*



This work

Myrcia sp. 2

44*



This work

Myrcia sp. 3

44*



This work

Myrcia sp. 4

22*



This work

Results

Chromosome numbers of 20 species of Myrciinae are

presented (Table 3, Fig. 1). In Gomidesia, three of the

four species analysed were diploid with 2n = 22, one

species, G. gaudichaudiana, was polyploid, with 2n =

44 (Table 3). In Marlierea, three species were diploid,

i. e. 2n = 22 (Table 2, Fig. 1B, C, D). In Myrceugenia,

both M. ovata and M. myrcioides had 2n = 22 (Table 3).

In Myrcia nine species were diploid with 2n = 22 and

two were polyploid with 2n = 44 (Table 3, Fig. 1J). In

only two species, M. bella and M. fallax, was it possible

to confirm both the gametic (n = 11) and somatic

(2n = 22) chromosome numbers (Table 3).

Discussion

According to Landrum & Kawasaki (1997), who

included  Gomidesia and  Marlierea in  Myrcia, the

Myrciinae in Brazil consists of about 540 species.

Chromosome numbers were previously known for

only 12 (2.2%) of these. This investigation has

increased this percentage to c. 5.4% (29 species), and

included  Gomidesia and  Marlierea  for the first time

(Table 3).

A constant number of 2n = 22 was observed in all

species and genera analysed, except for the

polyploids, which had multiples of x = 11. These

results confirm the base chromosome number of x =



11 for Myrtaceae (Atchinson 1947; Raven 1975), even

though these authors had based their conclusions

principally on subfamilies Leptospermoideae and

Chamelaucioideae since only a few species of Myrtoideae

had previously been studied.

The basic chromosome number in Myrtaceae

differs from that of most families in the order



Myrtales (sensu  APG 2003). According to Costa

(2004), families that are phylogenetically closer to



Myrtaceae such as Vochysiaceae and  Heteropixidaceae,

have similar chromosome numbers, with species

groups of 2n = 22 and 2n = 24, whereas more

distantly-related families (e.g. Melastomataceae,



Lythraceae and  Combretaceae) possess different basic

chromosome numbers such as x = 8, 9, 10, 12, 13 and

14 (Costa 2004).

For  Myrceugenia,  records are available for six

Brazilian and three Chilean species (Landrum 1981;

Sanders et al. 1983), all of which are diploid with 2n =

22 (Table 3). For M. ovata 2n = 22 was reported by

Landrum (1981) for the gracilis variety (also used

here), while the record of 2n = 22 in M. myrcioides is

new. So far, there are no reports of polyploid species

in this genus.

In Marlierea (three species) and Gomidesia (three

species), all species were diploid with 2n = 22 (Table

3, Fig. 1), except for Gomidesia gaudichaudiana (2n =

44), a species whose distribution is restricted to the

Cadeia do Espinhaço, Minas Gerais.

In  Myrcia,  the gametic number of n = 11 for M.

bella and M. lingua was previously reported by Forni-

Martins & Martins (2000) and confirmed here for

mitotic cells with 2n = 22 (Table 3). The same

chromosome number (2n = 22) was found in nine

other species studied, except for two unindentified

polyploid species with 2n = 44 (Table 3).

The occurrence of polyploid species in the

Myrciinae supports the suggestion of Rye (1979) that

polyploidy is frequent in Myrtoideae, as also

emphasised by Costa & Forni-Martins (2006a).

Polyploidy may have played an important role in

evolution of Myrtoideae (Atchinson 1947; Andrade &

Forni-Martins 1998; Costa & Forni-Martins 2006a;

Rye 1979). According to Costa & Forni-Martins

(submitted a), the frequency of polyploid species in

the other subtribes is even higher. In Eugeniinae, c.

22.5% of species of Eugenia studied are polyploid,

whereas in Myrtinae, c. 50% of species studied are

polyploids. In Psidium  75% of the species studied

are polyploids (Costa & Forni-Martins 2006b).

The constant chromosome number and the small

size of the chromosomes (Atchinson 1947; Costa

2004; Forni-Martins & Martins 2000; Rye 1979;

Vijayakumar & Subramanian 1985), limits the

usefulness of chromosome numbers as taxonomic

characters in the subfamily Myrtoideae. The

occurrence of 2n = 22 in all species of four genera

analysed does not allow a clear taxonomic

distinction among genera Myrcia,  Marlierea and



Gomidesia, as previously suggested by several authors

(Legrand 1958, 1962; McVaugh 1968; Barroso

1991), nor does it support the unification of these

genera (Landrum & Kawasaki 1997). The

occurrence of polyploid species in genera of

Myrciinae such as Myrcia and  Gomidesia,  is of little

taxonomic significance at the generic level. This

conclusion differs from that of Landrum (1981),

who stated that genera might be differentiated by

their degree of ploidy. 

In  Leptospermoideae, variation in chromosome

number has been reported in Actinidium (n = 6),

Beaufortia (n = 8, 10), Darwinia (n = 6, 7, 9, 12, 14),

Verticordia (n = 6, 7, 8, 9, 11, 12, 16, 22) and

Thr yptomene (n = 9, 10, 11 and 22), and has been

considered a useful taxonomic character in these

genera (Rye 1979). Although less frequent in

Leptospermoideae, intrageneric polyploidy was observed

by Rye (1979) in Calytrix (2n = 22, 44), Chamelaucium

(2n = 22, 44, 66), Darwinia (2n = 10, 12, 14, 18, 22,

24, 28, 36, 42) and Verticordia (2n = 12, 14, 16, 18, 22,

24, 32, 44). Brighton & Ferguson (1976) also found

polyploid species in Melaleuca, with a diploid number

of 2n = 22, 33, 44 and 66. In Leptospermoideae,

numerical variation is mainly due to disploidy

(Atchinson 1947; Rye 1979).

CHROMOSOME STUDIES IN MYRCIINAE



117

© The Board of Trustees of the Royal Botanic Gardens, Kew, 2007



Fig. 1. Chromosomes in species of MyrciinaeGomidesia sp.

(2n = 22); B  Marlierea clausseniana (2n = 22); Marlierea



warmingiana  (2n = 22); Marlierea tomentosa (2n = 22); E

Myrcia bella (n = 11); Myrcia formosiana (2n = 22); Myrcia

sp. 4 (2n = 22); Myrcia sp. 1 (2n = 22); Myrcia sp. 2 (2n =

44). Scalebars: 5 µm.

A

B



C

D

E



F

G

H



J

Acknowledgements

The authors thank C. F. Verola, C. Urbanetz, K.

Matsumoto and L. Freitas for donating  material and

Marcos Sobral (UFMG) and Eve Lucas (RBG Kew)

for identifying the species. J. H. Dutilh, K. Yamamoto

and C. E. B. Proença are thanked for improvements

to the manuscript. I. R. C.  was supported by a

scholarship FAPESP (Fundação de Amparo à

Pesquisa do Estado de São Paulo) and E. R. F. M. is

the recipient of a Research Fellowships from the

CNPq (Conselho Nacional de Desenvolvimento

Científico e Tecnológico). This work was supported

by FAPESP (grant n

o

01/13169-6). 



References

Andrade, F. G. & Forni-Martins, E. R. (1998). Estudos

cromossômicos em espécies de Myrtaceae. Genet.

Molec. Biol. 21 (Suppl. 3): 166.

Angiosperm Phylogeny Group (APG) (2003). An

update of Angiosperm Phylogeny Group

classification for the orders and families of

flowering plants: APG II. Bot. J. Linn. Soc. 141: 399

– 436.

Atchinson, E. (1947). Chromosome numbers in the



Myrtaceae. Amer. J. Bot. 34: 159 – 164.

Barroso, G. M. (1991). Myrtaceae. In: G. M. Barroso,

A. L. Peixoto, G. C. Costa, C. L. F. Ichaso & E. F.

Guimaraes (eds.), Sistemática de Angiospermas do

Brasil. Vol. II: 114 – 126. Universidade Federal de

Viçosa, Imprensa universitária, Viçosa.

Berg, O. (1855 – 1856) Revisio Myrtacearum Americae.

Linnaea 27: 1 – 472

—— (1857 – 1859). Myrtaceae. In: C. F. P. von Martius

(ed.), Flora Brasiliensis 14: 1 – 655. 

Briggs, B. G. & Johnson, L. A. S. (1979). Evolution in

the  Myrtaceae: evidence from inflorescence

structure. Proc. Linn. Soc. New South Wales 102:

155 – 256.

Brighton, C. A. & Ferguson, I. K. (1976).

Chromosome counts in the genus Melaleuca

(Myrtaceae)Kew Bull. 31: 27 – 33.

Costa, I. R. (2004). Estudos cromossômicos em

espécies de Myrtaceae Juss. no sudeste do Brasil.

Masters thesis. Universidade Estadual de

Campinas. Campinas, SP, Brazil. [Unpublished.].

—— & Forni-Martins, E. R. (2006a). Chromosome

studies in EugeniaMyrciaria and Plinia  (Myrtaceae)

from southeastern Brazil. Austral. J. Bot. 54: 409 –

415.

—— &  —— (2006b). Chromosome studies in



Campomanesia  Ruiz & Pávon and Psidium  L.

(Myrtaceae  Juss.) from southeastern Brazil.

Caryologia 59: 7 – 13.

Cronquist, A. (1981). An integrated system of

classification of flowering plants.  Columbia

University Press. New York.

Forni-Martins, E. R & Martins, F. R. (2000).

Chromosome studies on Brazilian cerrado plants.

Genet. Molec. Biol. 23: 947 – 955. 

Guerra, M. (1983). O uso do Giemsa em citogenética

vegetal — comparação entre a coloração simples e

o bandamento. Ci. & Cult. 35: 190 – 193.

Landrum, L. (1981). A monograph of the genus

Myrceugenia (Myrtaceae). Fl. Neotrop. Monogr. 29.

—— (1986). Campomanesia, Pimenta, Blepharocalyx,



Legrandia Acca, Myrrhinium and Luma (Myrtaceae).

Fl. Neotrop. Monogr 45.

——

& Kawasaki, M. L. (1997). The genera of



Myrtaceae

in Brazil: an illustrated synoptic

treatment and identification keys. Brittonia 49: 508

– 536.


Legrand, C. D. (1958). Las especies tropicales del

género Gomidesia (Myrtaceae). Comum. Bot. Mus.

Hist. Nat. Montevideo 3 (37): 1 – 30. 

—— (1962). Sinopsis de las especies de Marlierea del

Brasil (Myrtaceae). Comum. Bot. Mus. Hist. Nat.

Montevideo 3 (40): 1 – 39. 

Lucas, E., Belsham, S., NicLughada, E., Orlovich, D.,

Sakuragui, C., Chase, M. & Wilson, P. G. (2005).

Phylogenetics patterns in the fleshy-fruited

Myrtaceae — preliminary molecular evidence. Pl.

Syst. Evol. 251: 35 – 51.

McVaugh, R. (1956). Tropical American Myrtaceae.

Notes on generic concepts and descriptions of

previously unrecognized species. Fieldiana, Bot. 29

(3): 145 – 228.

—— (1968). The genera of American Myrtaceae 

An interim report. Taxon 17: 354 – 418.

Medina, D. M. & Conagin, C. H. T. M. (1964).

Técnica citológica. Publicação no. 2610, Instituto

Agronômico, Campinas.

Niedenzu, F. (1893). Myrtaceae. In: A. Engler & K.

Prantl (ed.), Die Natürlichen Pflanzenfamilien III

(7): 57 – 107. W. Engelmann, Leipzig.

Raven, P. (1975). The bases of Angiosperm

Phylogeny: Cytology. Ann. Missouri Bot. Gard. 62:

724 – 764.

Rye, B. (1979). Chromosome number variation in the



Myrtaceae and its taxonomic implications. Austral.

J. Bot. 27: 547 – 573.

Sanders, R. G., Stuessy, T. F. & Rodríguez, R. (1983).

Chromosome numbers from the flora of the Juan

Fernandez Islands. Amer. J. Bot. 70: 799 – 810.

Schmid, R. (1980). Comparative anatomy and

morphology of Psiloxylon and Heteropyxis, and the

subfamilial and tribal classification of Myrtaceae.

Taxon 29: 559 – 595.

Vijayakumar, N. & Subramanian, D. (1985).

Cytotaxonomical studies in South Indian

Myrtaceae. Cytologia 50: 513 – 520.

Wilson, P. G., O’Brien, M. M., Gadek, P. A. & Quinn,

C. J. (2001). Myrtaceae revisited: a reassessment of

intrafamilial groups. Amer. J. Bot. 88: 2013 – 2025. 



118

KEW BULLETIN VOL. 62(1)



© The Board of Trustees of the Royal Botanic Gardens, Kew, 2007


Yüklə 195,39 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2020
rəhbərliyinə müraciət

    Ana səhifə