Melaleuca Gall Midge (suggested common name) Lophodiplosis trifida Gagné



Yüklə 0,5 Mb.
Pdf görüntüsü
tarix30.08.2017
ölçüsü0,5 Mb.

EENY655

Melaleuca Gall Midge (suggested common name) 

Lophodiplosis trifida Gagné (Insecta: Diptera: 

Cecidomyiidae: Cecidomyiinae: Cecidomyiini)

1

Matthew R. Moore, James P. Cuda, Paul D. Pratt, and Min B. Rayamajhi

2

1.  This document is EENY655, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date July 2016. 



Visit the EDIS website at 

http://edis.ifas.ufl.edu

.

2.  Matthew R. Moore; James P. Cuda, professor; Paul D. Pratt, adjunct assistant; and Min B. Rayamajhi, assistant scientist; Department of Entomology and 



Nematology, UF/IFAS Extension, Gainesville, FL 32611.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to 

individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national 

origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office.

U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County 

Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.



Introduction

The melaleuca gall midge, Lophodiplosis trifida Gagné, is a 

natural enemy of the invasive plant melaleuca (Australian 

broadleaved paperbark), Melaleuca quinquenervia (Cav.) 

S.T. Blake (Myrtales: Myrtaceae) in Florida (Figure 1). This 

species’ ability to form galls on and damage melaleuca trees 

led to its study as a possible biological control agent and its 

eventual release in the United States.



Distribution

The melaleuca gall midge is native to eastern coastal areas 

of Queensland and New South Wales in Australia (Gagné 

et al. 1997; Gagné 2010). Specifically, the melaleuca gall 

midge has been collected near the towns of Tully and 

Woodburn, Roy’s Road, and the Brisbane suburb of 

Indooroopilly (Gagné et al. 1997; Goolsby et al. 2002; 

Gagné 2010; Wineriter Wright and Center 2008) (Figure 

2). In 2008, the melaleuca gall midge was approved for field 

release into Florida. It was subsequently released at 24 sites 

across southern Florida in 13 counties (Broward, Charlotte, 

Collier, Hendry, Hillsborough, Lee, Martin, Miami-Dade, 

Orange, Palm Beach, Polk, Sarasota, and St. Lucie) (USDA 

2008; Pratt et al. 2013) (Figure 3). The released melaleuca 

gall midges survived at all release locations except one, due 

to a freeze at the site (Pratt et al. 2013). This locality was 

recolonized by melaleuca gall midges from nearby areas 

and the midge has subsequently spread to other areas in 

Florida where Melaleuca quinquenervia occurs (Pratt et al. 

2013). The melaleuca gall midge has spread from the initial 

release sites at an average of 6.0 km/year (Pratt et al. 2013).

Description and Identification

Larvae

The three larval instars of the melaleuca gall midge feed, 

grow, and molt within prominent galls formed on young 

shoots of Melaleuca spp. (Gagné et al. 2009). The larvae 

of this midge are cylindrical, spindleform, and very small 

(Gagné et al. 2009). Larvae range in total length from 

0.3–0.5 mm (first instar), 0.6–0.9 mm (second instar), and 

Figure 1. Lophodiplosis trifida Gagné adult resting on 

vegetation. A) Red dots visible on the plant are eggs. B) Adult resting 

on vegetation.

Credits: Matthew Purcell, USDA and CSIRO


2

Melaleuca Gall Midge (suggested common name) Gagné (Insecta: Diptera: Cecidomyiidae: ...Lophodiplosis trifida

1.3–2.0 mm (third instar) (Gagné et al. 2009). Melaleuca 

gall midge larvae can be distinguished from the other 

species of Lophodiplosis by the absence of setae (hairs) 

on most of the papillae (small body protuberances) and a 

unique three-toothed spatula on the prothorax of the third 

instar (Gagné et al. 2009) (Figure 4).



Pupae

Melaleuca gall midges pupate within their galls (Gagné 

1997; Gagné et al. 2009). The pupae of Lophodiplosis species 

have specialized projections on the vertex of the head, 

evidently used to cut through plant gall tissue when the 

adults emerge (Gagné et al. 2009). The pupal vertex projec-

tion of the melaleuca gall midge is angled along its length 

and has three points at its apex (Gagné 1997).



Adults

Melaleuca gall midge adults are very small, 2.0–2.3 mm in 

length (Gagné 1997) (Figure 5). The females are slightly 

larger than males and have red or orange abdomens (filled 

with eggs) (Goolsby et al. 2002). Males have thinner 

abdomens that end in two distinctive hook-like cerci 

(Gagné 1997; Goolsby et al. 2002). Adult melaleuca gall 

midges can be distinguished from the other species in the 

genus Lophodiplosis by features of the male and female 

terminal abdominal segment (Gagné 1997).

Figure 2. Distribution of Lophodiplosis trifida Gagné in Queensland and 

New South Wales, Australia.

Credits: Matthew R. Moore, University of Florida

Figure 3. Initial 2008 field release sites for Lophodiplosis trifida Gagné 

in Florida. Lophodiplosis trifida Gagné has since established in Florida 

and is spreading to areas where its host melaleuca occurs. Locality 

data were taken from Pratt et al. (2013).

Credits: Matthew R. Moore, University of Florida

Figure 4. Third instar larva of Lophodiplosis trifida Gagné. A) 

Dorsolateral view of entire larva. B) Anterior segments of the larva, 

detailing the head, thorax, and spatula. C) First thoracic segment with 

lateral papillae (lp) and three-toothed spatula (arrow).

Credits: Recreated from figures 5, 6, and 7 in Gagné et al. (2009)


3

Melaleuca Gall Midge (suggested common name) Gagné (Insecta: Diptera: Cecidomyiidae: ...Lophodiplosis trifida



Life Cycle and Biology

The melaleuca gall midge was originally thought to live 

as an inquiline (i.e., present in the galls of other Lopho-

diplosis species) (Gagné 1997). Subsequent observations 

revealed that melaleuca gall midge forms galls on new 

stems of Melaleuca quinquenervia following flowering 

(Purcell et al. 2007). Persistent galls formed by melaleuca 

gall midges on Melaleuca quinquenervia result in damaged 

and deformed branches, plant dieback, blockage of vascular 

tissues, and sometimes plant death (Goolsby et al. 2002; 

Purcell et al. 2007) (Figure 6).

Melaleuca gall midge adults live only one to five days 

(Goolsby et al. 2002; USDA 2008). Females can lay 

hundreds of eggs on young leaves and stems during their 

short lives, with the average female laying 162 eggs under 

greenhouse conditions (Goolsby et al. 2002; USDA 2008). 

Eggs typically hatch after six days (USDA 2008).

Larvae hatch and burrow into plant stems where their 

salivary enzymes initiate gall formation in their Mela-

leuca hosts (Goolsby et al. 2002; USDA 2008). The galling 

is much more intense on lower branches of the tree (0–2 m 

high, > 75% of available branches are galled) and rates of 

galling decrease higher up the tree (Pratt et al. 2014). Galls 

formed by melaleuca gall midges can be monothalamous 

(having one chamber) or polythalamous (having multiple 

chambers) (USDA 2008). It takes about six weeks from 

the time that the larva emerges from the egg until the 

midge becomes an adult (Goolsby et al. 2002; USDA 2008) 

(Figures 7 and 8).

The host range of Lophodiplosis trifida is narrow 

(Goolsby et al. 2002; Wineriter Wright and Center 2008). 

Experiments demonstrated that melaleuca gall midges 

will oviposit on several Melaleuca species and at least one 

related Myrtaceae genus (Callistemon) (Goolsby et al. 2002; 

USDA 2008; Wineriter Wright and Center 2008). However, 

melaleuca gall midges complete their development only 

on Melaleuca quinquenervia and two other closely 

related Melaleuca species (Goolsby et al. 2002; USDA 2008; 

Wineriter Wright and Center 2008).

Figure 6. Galls of the melaleuca gall midge, Lophodiplosis trifida Gagné, 

on melaleuca. A) Galls formed on young stems. B) Plant dieback after 

persistent gall damage.

Credits: Paul D. Pratt, USDA

Figure 7. Internal structure of Lophodiplosis trifida Gagné gall on a 

melaleuca stem.

Credits: Paul D. Pratt, USDA

Figure 8. Newly emerged adult and pupal exuviae of Lophodiplosis 

trifida Gagné on melaleuca.

Credits: Lyle J. Buss, UF/IFAS

Figure 5. A) Top; and B) underside of a melaleuca gall midge, 

Lophodiplosis trifida Gagné, adult female.

Credits: Lyle J. Buss, UF/IFAS



4

Melaleuca Gall Midge (suggested common name) Gagné (Insecta: Diptera: Cecidomyiidae: ...Lophodiplosis trifida



Biological Control of Melaleuca 

quinquenervia

Melaleuca is an invasive tree species in Florida wetland 

ecosystems, where it has the ability to form dense monocul-

tures and greatly reduce plant species diversity. Melaleuca 

quinquenervia is native to Australia, New Guinea, and New 

Caledonia and was intentionally introduced into Florida 

multiple times dating back to the 1880s through 1959 

(Craven and Lepschi 1999; Dray et al. 2006).

Melaleuca quinquenervia was and still is cultivated in 

various locations around the world including South 

America, Africa, Asia, Oceania, and the West Indies (Dray 

et al. 2006). This tree is valued as an ornamental plant due 

to its exotic-looking bark and flowers (Dray et al. 2006). 

Additionally, its bark and wood are used for packing 

material and lumber and the oils present in the leaves are 

used medicinally (Dray et al. 2006).

It is difficult to determine when melaleuca expanded into 

natural areas in Florida due to the lag time between when 

the tree escaped cultivation and became sufficiently dense 

to be noticed (Dray et al. 2006). By the 1920s, melaleuca 

had naturalized in cypress swamps in southwestern and 

southeastern Florida (Nehrling 1933; Small 1933). Surveys 

estimated that melaleuca occupies at least 200,000 ha of 

wetlands in Florida (Bodle et al. 1994; Laroche 1998).

Management of melaleuca is challenging due to its fire 

tolerance and ability to sprout again from stumps that have 

been cut (Center et al. 2008). This tree threatens several 

habitats in Florida including prairies, cypress swamps, pine 

forest, hammock, salt marshes, and mangroves (Dray et al. 

2006; USDA 2008).

Introduction of the melaleuca gall midge into Florida was 

part of a larger control strategy for the melaleuca trees. 

Three different insect biological control agents of melaleuca 

have been released into Florida and have established. 

The 

leaf feeding weevil, Oxyops vitiosa (Pascoe) (Coleoptera: 



Curculionidae)

, was released in Florida in 1997 (Center 

et al. 2000, 2012). The weevil reduces the reproductive 

potential of melaleuca by consuming young foliage and 

destroying stem tips where flowers and fruits are produced 

(Balciunas et al. 1994; Center et al. 2000, 2012). 

The psyllid, 

Boreioglycaspis melaleucae Moore (Hemiptera: Psyllidae)

released into Florida in 2002, was the second insect bio-



control agent of melaleuca (Center et al. 2006). The psyllid 

feeds on the juices of melaleuca and completes its entire 

lifecycle on the plant (Purcell et al. 1997; Center et al. 2012).

In 2008, the third established biological control agent, the 

melaleuca gall midge, was released in Florida. Melaleuca 

gall midges are unlikely to kill or significantly damage 

mature melaleuca trees (USDA 2008). However, melaleuca 

gall midge damage can kill melaleuca seedlings and 

saplings, divert the tree’s resources from growth and 

reproduction, and enhance the effects of other biological, 

chemical, and mechanical controls (USDA 2008; Tipping et 

al. 2008; Rodgers et al. 2014; Rodgers 2016). The melaleuca 

gall midge has maintained an extremely narrow host range 

in Florida because it completes development only on Mela-

leuca quinquenervia (Pratt et al. 2013).

A combination of control tactics (intensive monitoring, 

mechanical removal of trees, and biological control) has 

been successful at removing large monocultures of mela-

leuca and limiting regrowth in some parts of the Florida 

Everglades (Figure 9).



Selected References

Balciunas JK, Burrows DW, Purcell MF. 1994. 

Field and 

laboratory host ranges of the Australian weevil Oxyops 

vitiosa (Coleoptera: Curculionidae), a potential biological 

control agent for the paperbark tree, Melaleuca quinque-

nervia

. Biological Control 4: 351–360. (22 April 2016)



Figure 9. Aerial images of Moore Haven boat ramp at Lake 

Okeechobee, FL demonstrating the effectiveness of melaleuca 

management in the area.

Credits: Reproduced from Rodgers (2016)



5

Melaleuca Gall Midge (suggested common name) Gagné (Insecta: Diptera: Cecidomyiidae: ...Lophodiplosis trifida

Bodle MJ, Ferriter AP, Thayer DD. 1994. The biology, 

distribution, and ecological consequences of Melaleuca 

quinquenervia in the Everglades. p. 341-355. In Davis SM 

and Ogden JC (eds.), Everglades: The ecosystem and its 

restoration. St. Lucie Press. Delray Beach, Florida, United 

States. 860 p.

Center TD, Van TK, Rayachhetry M, Buckingham GR, 

Dray Jr. FA, Wineriter SA, Purcell MF, Pratt PD. 2000. 

Field 

colonization of the Melaleuca Snout Beetle (Oxyops vitiosa) 



in South Florida

. Biological Control 19: 112–123. (22 April 

2016)

Center TD, Pratt PD, Tipping PW, Rayamajhi MB, Van TK, 



Wineriter SA, Dray Jr. FA, Purcell MF. 2006. 

Field coloniza-

tion, population growth, and dispersal of Boreioglycaspis 

melalucae Moore, a biological agent of the invasive tree Me-

laleuca quinquenervia (Cav.) Blake

. Biological Control 39: 

363–374. (22 April 2016)

Center TD, Pratt PD, Tipping PW, Rayamajhi, Wineriter 

SA, Purcell MF. 2008. 

Biological control of Melaleuca 

quinquenervia: Goal-based assessment of success

. p. 


657–666. In Julien M, Sforza R, Bon MC, Evans HC, 

Hatcher PE, Rector BG (eds.), Proceedings of the XII 

International Symposium on Biological Control of Weeds. 

CSIRO European Laboratory. Montpellier, France. 768 p. 

(22 April 2016)

Center TD, Purcell MF, Pratt PD, Rayamajhi MB, Tipping 

PW, Wright SA, Dray Jr. FA. 2012. 

Biological control of Me-

laleuca quinquenervia: an Everglades invader

. BioControl 

57: 151–165. (22 April 2016)

Craven LA, Lepschi BJ. 1999. 

Enumeration of the species 

and infraspecific taxa of Melaleuca (Myrtaceae) occurring 

in Australia and Tasmania

. Australian Systematic Botany 

12: 819–927. (22 April 2016)

Dray Jr. FA, Bennett BC, Center TD. 2006. 

Invasion history 

of Melaleuca quinquenervia (Cav.) S.T. Blake in Florida

Castanea 71: 210–225. (22 April 2016)



Gagné RJ. 2010. 

Update for a catalog of the Cecidomyiidae 

(Diptera) of the world

. Systematic Entomology Labora-

tory, Agricultural Research Service, U. S. Department of 

Agriculture. Washington, D. C., United States. 544 p. (22 

April 2016)

Gagné RJ, Balciunas JK, Burrows DW. 1997. 

Six new 

species of gall midges (Diptera: Cecidomyiidae) from 

Melaleuca (Myrtaceae) in Australia

. Proceedings of the 

Entomological Society of Washington 99: 312–334. (22 

April 2016)

Gagné RJ, Wright SA, Purcell MF, Brown BT, Pratt PD, 

Center TD. 2009. 

Description of the larva of Lophodiplosis 

trifida, an Australian gall midge (Diptera: Cecidomyiidae) 

and biocontrol agent of paperbark in Florida, USA

. The 


Florida Entomologist 92: 593–597. (22 April 2016)

Goolsby J, Purcell M, Wright T, Makinson J, Zonneveld R, 

Brown B. 2002. 

2002 Annual Report. Australian Biological 

Control Laboratory

. United States Department of Agricul-

ture. Agricultural Research Service. Office of International 

Research Programs. Australian Biological Control Labora-

tory. Indooroopilly, Queensland, Australia. 100 p. (22 April 

2016)


Laroche FB. 1998. 

Managing melaleuca (Melaleuca 

quinquenervia) in the Everglades

. Weed Technology 12: 

726–732. (22 April 2016)

Nehrling H. 1933. The plant world in Florida; from the 

published manuscripts of Dr. Henry Nehrling; collected and 

edited by Alfred and Elizabeth Kay. MacMillan Co. New 

York, New York, United States. 304 p.

Pratt PD, Rayamajhi MB, Tipping PW, Center TD, Wright 

SA, Purcell M. 2013. 

Establishment, population increase, 

spread, and ecological host range of Lophodiplosis 

trifida (Diptera: Cecidomyiidae), a biological control agent 

of the invasive tree Melaleuca quinquenervia (Myrtales: 

Myrtaceae)

. Environmental Entomology 42: 925–935. (22 

April 2016)

Pratt PD, Rayamajhi MB, Brown B, Purcell MF, Center 

TD. 2014. 

Within-plant distribution of the Melaleuca 

quinquenervia biological control agent Lophodiplosis trifida

Biocontrol Science and Technology 24: 1073–1076. (22 



April 2016)

Purcell M, Wineriter S, Brown B. 2007. Lophodiplosis 

trifida Gagné (Diptera: Cecidomyiidae), a stem-galling 

midge with potential as a biological agent of Melaleuca 

quinquenervia (Myrtaceae). Australian Entomologist 34: 

123–125.


Rodgers L, Black D, Bodle M, Laroche F. 2014. 

Chapter 


7: Status of nonindigenous species

. 2014 South Florida 

Environmental Report 1: 1–53. (22 April 2016)


6

Melaleuca Gall Midge (suggested common name) Gagné (Insecta: Diptera: Cecidomyiidae: ...Lophodiplosis trifida

Rodgers L. 2016. 

Chapter 7: Status of nonindigenous 

species

. 2016 South Florida Environmental Report 1: 1–51. 



(22 April 2016)

Small JK. 1933. 

Manual of the southeastern flora: being 

descriptions of the seed plants growing naturally in Florida, 

Alabama, Mississippi, eastern Louisiana, Tennessee, North 

Carolina, South Carolina and Georgia

. New York, New 

York, United States. 1554 pp. (22 April 2016)

Tipping PW, Martin MR, Pratt PD, Center TD, Rayamajhi 

MB. 2008. 

Suppression of growth and reproduction of an 

exotic invasive tree by two introduced insects

. Biological 

Control 44: 235–241. (22 April 2016)

Turner CE, Center TD, Burrows DW, Buckingham GR. 

1998. 


Ecology and management of Melaleuca quinque-

nervia, an invader of wetlands in Florida, U. S. A

. Wetlands 

Ecology and Management 5: 165–178. (22 April 2016)

United States Department of Agriculture (USDA). Animal 

and Plant Health Inspection Service (APHIS). 2008. 

Field release of the biological control agent Lophodiplosis 

trifida Gagné (Diptera: Cecidomyiidae) for the control 

of Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtales: 

Myrtaceae) in the continental United States

. Environmental 

Assessment April 15, 2008. 30 pp. (22 April 2016)

Wineriter Wright SA, Center RD. 2008. 

Nonselective 

oviposition by a fastidious insect: The laboratory host range 

of the melaleuca gall midge Lophodiplosis trifida (Diptera: 

Cecidomyiidae)

. Biocontrol Science and Technology 18: 



793–807. (22 April 2016)


Yüklə 0,5 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2020
rəhbərliyinə müraciət

    Ana səhifə