ScienceDirect



Yüklə 422,06 Kb.
Pdf görüntüsü
səhifə4/4
tarix27.08.2017
ölçüsü422,06 Kb.
1   2   3   4

 

from


 

India.


Strains

 

Disease



 

caused


 

Zone


 

of

 



Inhibition

 

(mm)



 

MIC


 

(

␮g



 

mL

−1



)

E.

 



coli

 

(MTCC



 

723)


 

Gastroenteritis

 

11

 



125

S.

 



typhimurium

 

(MTCC



 

98)


Gastroenteritis,

 

septicaemia



 

11

 



250

B.

 



subtilis

 

(MTCC



 

121)


 

Food


 

poisoning

 

10

 



250

S.

 



epidermidis

 

(MTCC



 

435)


 

Nasopharyngeal

 

infection,



 

septicemia

 

and


 

endocarditis,

 

nosocomial



 

infections

 

8

 



250

S.

 



aureus

 

(MTCC



 

2940)


 

Nasopharyngeal

 

infection,



 

fatal


 

septicaemias,

 

pneumonias



 

(secondary

endocarditis,

 

meningitis,



 

etc.)


7

 

250



S.

 

aureus



 

(MTCC


 

96)


 

Nasopharyngeal

 

infection,



 

fatal


 

septicaemias,

 

pneumonias,



 

(secondary

endocarditis,

 

meningitis,



 

etc.)


6

 

125



S.

 

mutans



 

(MTCC


 

890)


Dental

 

caries,



 

endocarditis

6

 

250



K.

 

pneumoniae



 

(MTCC


 

109)


 

Pneumonia,

 

nosocomial



 

infections,

 

bronchitis,



 

etc.


 

na

 



500

P.

 



aeruginosa

 

(MTCC



 

741)


 

Nosocomial

 

infection



 

(hospital-acquired

 

infections)



 

na

 



500

na,


 

not


 

active.


variety

 

of



 

drug-resistant

 

bacterial



 

and


 

fungal


 

strains.


 

Most


 

of

 



the

work


 

carried


 

out


 

on

 



the

 

antimicrobial



 

potential

 

of

 



‘tea

 

tree’



 

oil


derived

 

from



 

M.

 



alternifolia.

 

This



 

oil


 

was


 

found


 

to

 



be

 

very



 

effective

against

 

numerous



 

pathogenic

 

bacterial



 

and


 

fungal


 

strains


 

and


 

thus


incorporated

 

as



 

the


 

active


 

ingredient

 

in

 



many

 

topical



 

formulations

used

 

to



 

treat


 

cutaneous

 

conditions.



 

The


 

broad-spectrum

 

antimicro-



bial

 

activity



 

of

 



tea

 

tree



 

oil


 

is

 



mainly

 

attributed



 

to

 



terpinen-4-ol

 

and



1,8-cineole

 

and



 

also


 

due


 

to

 



synergistic

 

effect



 

of

 



other

 

minor



 

com-


ponents

 

(



␣-terpinene,

 

␥-terpinene,



 

etc.)


 

of

 



its

 

essential



 

oil.


 

Due


 

to

broad



 

antimicrobial

 

activity,



 

tea


 

tree


 

oil


 

is

 



used

 

as



 

topical


 

antimicro-

bial

 

agent



 

in

 



variety

 

of



 

product


 

form


 

in

 



the

 

treatment



 

of

 



infections

or

 



conditions

 

such



 

as

 



herpes

 

labialis,



 

acne,


 

tinea,


 

eczema,


 

furun-


culosis,

 

onychomycosis,



 

dandruff,

 

and


 

oral


 

candidiasis,

 

and


 

in

 



the

clearance

 

of

 



methicillin-resistant

 

S.



 

aureus


 

carriage


 

(

Carson



 

et

 



al.,

1996;


 

Hammer


 

et

 



al.,

 

2003



).

 

Moreover,



 

it

 



also

 

possessed



 

potent


antiprotozoal,

 

antiviral,



 

antimycoplasmal,

 

and


 

anti-inflammatory

activities

 

(



Carson

 

et



 

al.,


 

2006


).

 

Moreover,



 

the


 

chemical


 

and


 

biolog-


ical

 

evaluation



 

including

 

antimicrobial



 

and


 

antifungal

 

activities



 

of

the



 

essential

 

oils


 

of

 



other

 

Melaleuca



 

spp.,


 

viz.


 

M.

 



cajuputi,

 

M.



 

dissi-


tiflora,

 

M.



 

ericifolia,

 

M.

 



leucadendron,

 

M.



 

armillaris,

 

M.

 



styphelioides,

and


 

M.

 



quinquenervia

 

were



 

also


 

reported


 

against


 

a

 



range

 

of



 

bac-


terial

 

and



 

fungal


 

strains


 

(

Barbosa



 

et

 



al.,

 

2013;



 

Farag


 

et

 



al.,

 

2004;



Hammer

 

et



 

al.,


 

2003;


 

Park


 

et

 



al.,

 

2011;



 

Pujiarti


 

et

 



al.,

 

2012;



 

Silva


et

 

al.,



 

2010


).

 

Based



 

on

 



zone

 

of



 

inhibition

 

(mm)


 

and


 

MIC


 

(

␮g



 

mL

−1



)

data


 

of

 



antibacterial

 

assay



 

in

 



present

 

analysis,



 

it

 



is

 

evident



 

that


the

 

essential



 

oil


 

of

 



M.

 

linarrifolia



 

from


 

India


 

was


 

found


 

to

 



possess

good


 

antibacterial

 

activity


 

against


 

E.

 



coli,

 

S.



 

typhimurium,

 

B.

 



sub-

tilis,


 

and


 

moderate


 

activity


 

against


 

S.

 



epidermidis,

 

S.



 

aureus,


 

and


 

S.

mutans.



 

Moreover,

 

the


 

potential

 

of

 



M.

 

linarrifolia



 

essential

 

oil


 

may


be

 

explored



 

to

 



control

 

the



 

various


 

diseases


 

caused


 

by

 



tested

 

bacte-



rial

 

strains



 

(

Table



 

2

).



Melaleuca

 

species



 

have


 

been


 

examined


 

in

 



the

 

past



 

for


 

essen-


tial

 

oil



 

composition

 

and


 

phenylpropanoids

 

(methyl


 

eugenol,


(E)-methyl

 

isoeugenol),



 

monoterpenoids

 

(1,8-cineole,



 

terpinen-4-

ol,

 

terpinolene),



 

and


 

sesquiterpenoids

 

{(E)-nerolidol,



 

viridiflorol

}

were


 

reported


 

as

 



the

 

mostly



 

distributed

 

constituents



 

in

 



their

 

essen-



tial

 

oils



 

(

Aboutabl



 

et

 



al.,

 

1991;



 

Brophy


 

et

 



al.,

 

2006,



 

2012;


 

Gupta


et

 

al.,



 

2012;


 

Silva


 

et

 



al.,

 

2007,



 

2010;


 

Southwell

 

et

 



al.,

 

2005;



 

Trilles


et

 

al.,



 

2006;


 

Wheeler


 

et

 



al.,

 

2007



).

 

1,8-Cineole



 

(44.76–64.30%)-

rich

 

chemotype



 

of

 



M.

 

leucadendra



 

was


 

reported


 

from


 

Egypt


 

and


Java,

 

Indonesia



 

(

Aboutabl



 

et

 



al.,

 

1991;



 

Farag


 

et

 



al.,

 

2004;



 

Pujiarti


et

 

al.,



 

2011


).

 

1,8-Cineole



 

chemotypes

 

of

 



M.

 

quinquenervia



 

(up


 

to

76.0%)



 

and


 

M.

 



cajuputi

 

(50–72%)



 

were


 

reported


 

from


 

Australia,

New

 

Guinea,



 

Madagascar,

 

and


 

New


 

Caledonia

 

origin


 

(

Budiadi



Ishii

 

et



 

al.,


 

2005;


 

Sakasegawa

 

et

 



al.,

 

2003;



 

Trilles


 

et

 



al.,

 

2006;



Wheeler

 

et



 

al.,


 

2007


).

 

1,8-Cineole



 

chemotypes

 

for


 

M.

 



hypericifolia

(65.0–88.0%),

 

M.

 



armillaris

 

(80.2%),



 

and


 

M.

 



ericifolia

 

(79.5%)



 

were


also

 

reported



 

from


 

Brazil


 

(

Silva



 

et

 



al.,

 

2007,



 

2010


).

 

1,8-Cineole



also

 

predominated



 

in

 



various

 

member/forms



 

of

 



broombush

 

com-



plex

 

of



 

the


 

genus


 

Melaleuca

 

native


 

of

 



western

 

Australia,



 

viz.


 

M.

stereophloia



 

(78–83%),

 

M.

 



atroviridis

 

(73.2%),



 

M.

 



concreta

 

(58–81%),



M.

 

exuvia



 

(56–67%),

 

M.

 



zeteticorum

 

(63–68%),



 

M.

 



vinnula

 

(60.6%),



 

M.

scalene



 

(43–55%),

 

and


 

M.

 



uncinata

 

(44–56%)



 

(

Brophy



 

et

 



al.,

 

2006



).

1,8-Cineole-rich

 

essential



 

oil


 

chemotypes

 

of

 



M.

 

teretifolia



 

(84.0%),


M.

 

uncinata



 

(80–85%),

 

M.

 



linophylla

 

(71–88%),



 

M.

 



alsophila

 

(up



 

to

66.0%),



 

and


 

M.

 



laterifolia

 

(70–87%)



 

were


 

also


 

reported


 

from


 

forest


plantation

 

of



 

Meleleuca

 

species


 

grown


 

in

 



western

 

Australia



 

(

Brophy,



1999;

 

Southwell



 

et

 



al.,

 

2005



).

1,8-Cineole,

 

also


 

known


 

as

 



eucalyptol,

 

has



 

characteristically

fresh

 

and



 

camphoraceous

 

fragrance



 

and


 

pungent


 

taste


 

and


 

hence


used

 

extensively



 

in

 



food-flavor,

 

pharmaceutical,



 

and


 

cosmetic


industries.

 

It



 

possesses

 

various


 

pharmacological

 

activities



 

includ-


ing

 

inflammatory,



 

anti-microbial,

 

anticancer,



 

anti-inflammatory,

antioxidant,

 

bactericidal,



 

herbicidal,

 

insecticidal,



 

etc.


 

(Budiadi


 

Ishii


et

 

al.,



 

2005;


 

Juergens


 

et

 



al.,

 

2003;



 

Silva


 

et

 



al.,

 

2010



).

 

1,8-Cineole



 

was


found

 

to



 

possess


 

strong


 

larvicidal,

 

insecticidal,



 

fumigant


 

toxicity-

repellent,

 

antifeedent



 

activities

 

against


 

various


 

insects,


 

viz.


 

Aedes


aegypti,

 

Sitophilus



 

oryzae,


 

Tribolium

 

castaneum,



 

Oryzaephilus

 

suri-


namensis,

 

Musca



 

domestica,

 

Blattella



 

germanica,

 

Lycoriella



 

mali,


Tenebrio

 

molito,



 

etc.


 

(

Ebadollahi,



 

2013;


 

Park


 

et

 



al.,

 

2011



).

 

Besides



the

 

insecticidal



 

action,


 

1,8-cineole

 

also


 

displays


 

anti-inflammatory

activity

 

which



 

is

 



associated

 

with



 

its


 

capability

 

to

 



inhibit

 

the



cyclooxygenase

 

pathway,



 

preventing

 

prostanoid



 

biosynthesis

 

and


consequently

 

reducing



 

symptoms


 

of

 



inflammatory

 

diseases.



 

In

Germany,



 

1,8-cineole

 

was


 

registered

 

and


 

licensed


 

as

 



a

 

medicinal



product

 

and



 

is

 



sold

 

in



 

the


 

form


 

of

 



100

 

mg



 

capsules


 

for


 

treatment

 

of

acute



 

and


 

chronic


 

bronchitis,

 

sinusitis,



 

and


 

respiratory

 

infections



(

Barbosa


 

et

 



al.,

 

2013;



 

Juergens


 

et

 



al.,

 

2003



).

 

Therefore,



 

1,8-cineole

has

 

great



 

therapeutic

 

potential



 

for


 

treating


 

respiratory

 

and


 

inflam-


matory

 

diseases



 

such


 

as

 



coughs

 

and



 

colds,


 

rheumatism,

 

neuralgia,



muscular

 

pain,



 

asthma,


 

disinfectant,

 

analgesic,



 

chronic


 

bronchi-


tis,

 

sinusitis,



 

and


 

nasal


 

infections

 

(

Barbosa



 

et

 



al.,

 

2013;



 

Juergens


et

 

al.,



 

2003;


 

Kirsch


 

and


 

Buettner,

 

2013;


 

Miyazawa


 

et

 



al.,

 

2001;



 

Silva


et

 

al.,



 

2010


).

 

GC/FID



 

and


 

GC/MS


 

analyses


 

of

 



the

 

essential



 

oil


 

of

 



M.

linarrifolia

 

from


 

India


 

showed


 

1,8-cineole

 

(77.40%)


 

and


 

␣-terpineol

(7.72%%)

 

as



 

the


 

major


 

constituents.

 

This


 

essential

 

oil


 

possessed

good

 

antibacterial



 

activity


 

against


 

E.

 



coli,

 

S.



 

typhimurium,

 

B.

 



sub-

tilis,


 

and


 

moderate


 

activity


 

against


 

S.

 



epidermidis,

 

S.



 

aureus,


 

and


S.

 

mutans.



 

Therefore,

 

on

 



the

 

basis



 

of

 



significant

 

essential



 

oil


 

yield


(1.10%),

 

1,8-cineole



 

content,


 

and


 

the


 

reported


 

biological

 

activities



of

 

its



 

major


 

constituent,

 

it

 



is

 

concluded



 

that


 

this


 

plant


 

can


 

be

 



prop-

agated


 

and


 

processed

 

for


 

isolation

 

of

 



1,8-cineole

 

rich



 

essential

 

oil


for

 

industrial



 

use.


Acknowledgement

The


 

authors


 

are


 

thankful


 

to

 



Council

 

of



 

Scientific

 

and


 

Industrial

Research

 

(CSIR),



 

New


 

Delhi,


 

India


 

for


 

financial


 

support


 

to

 



carry

 

out



the

 

work.



 

The


 

authors


 

are


 

also


 

thankful


 

to

 



the

 

Director,



 

CSIR-Central

Institute

 

of



 

Medicinal

 

and


 

Aromatic


 

Plants


 

(CIMAP),


 

Lucknow,


 

U.P.,


India,

 

for



 

necessary

 

facilities



 

and


 

encouragement

 

and


 

the


 

Central


268

 

R.C.



 

Padalia


 

et

 



al.

 

/



 

Industrial

 

Crops


 

and


 

Products


 

63

 



(2015)

 

264–268



Instrument

 

Facility



 

(CSIR-CIMAP)

 

for


 

providing

 

facility


 

for


 

GC/MS


analysis.

References

Aboutabl,

 

E.A.,



 

Tohamy,


 

S.F.E.,


 

De-Poote,

 

H.L.,


 

De-Buyck,

 

L.F.,


 

1991.


 

A

 



comparative

study


 

of

 



the

 

essential



 

oils


 

from


 

three


 

Melaleuca

 

species


 

growing


 

in

 



Egypt.

 

Flav.



Frag.

 

J.



 

6

 



(2),

 

139–141.



Adams,

 

R.P.,



 

2007.


 

Identification

 

of

 



Essential

 

Oil



 

Components

 

by

 



Gas

 

Chromatogra-



phy/Mass

 

Spectrometry.



 

Allured


 

Publishing

 

Corp.,


 

Carol


 

Stream,


 

IL,


 

USA.


Barbosa,

 

L.C.A.,



 

Silva,


 

C.J.,


 

Teixeira,

 

R.R.,


 

Meira,


 

R.M.S.A.,

 

Pinheiro,



 

A.L.,


 

2013.


 

Chem-


istry

 

and



 

biological

 

activities



 

of

 



essential

 

oils



 

from


 

Melaleuca

 

L.

 



species.

 

Agric.



Conspec.

 

Sci.



 

78

 



(1),

 

11–23.



Bauer,

 

A.W.,



 

Kirby,


 

W.M.M.,


 

Sherries,

 

J.C.,


 

Truck,


 

M.,


 

1966.


 

Antibiotic

 

susceptibility



testing

 

by



 

standardized

 

single


 

disc


 

method.


 

Am.


 

J.

 



Clin.

 

Pathol.



 

45,


 

493–496.


Brophy,

 

J.J.,



 

1999.


 

Potentially

 

commercial



 

Melaleucas.

 

In:


 

Southwell,

 

I.,


 

Lowe,


 

R.

 



(Eds.),

Tea


 

Tree:


 

The


 

Genus


 

Melaleuca.

 

Harwood


 

Academic


 

Publishers,

 

Amsterdam,



 

The


Netherlands,

 

pp.



 

247–274.


Brophy,

 

J.J.,



 

Craven,


 

L.A.,


 

Lebouvier,

 

N.,


 

Cabalion,

 

P.,


 

Nour,


 

M.,


 

2012.


 

An

 



examination

of

 



the

 

leaf



 

essential

 

oils


 

of

 



the

 

endemic



 

Melaleuca

 

(Myrtaceae)



 

species


 

of

 



New

Caledonia.

 

J.

 



Essent.

 

Oil



 

Res.


 

24

 



(3),

 

273–278.



Brophy,

 

J.J.,



 

Goldsack,

 

R.J.,


 

Craven,


 

L.A.,


 

O’Sullivan,

 

W.,


 

2006.


 

An

 



investigation

 

of



 

the


leaf

 

oils



 

of

 



the

 

western



 

Australian

 

broombush



 

complex


 

(Melaleuca

 

uncinata


 

Sens.


Lat.)

 

(Myrtaceae).



 

J.

 



Essent.

 

Oil



 

Res.


 

18

 



(6),

 

591–599.



Budiadi

 

Ishii,



 

H.T.,


 

Sunarto,


 

S.,


 

Kanazawa,

 

Y.,


 

2005.


 

Variation

 

in

 



Kayu

 

Putih



 

(Melaleuca

leucadendron

 

Linn)



 

oil


 

quality


 

under


 

different

 

farming


 

systems


 

in

 



Java,

 

Indonesia.



Eurasian

 

J.



 

For.


 

Res.


 

8

 



(1),

 

15–20.



Butcher,

 

P.A.,



 

Bell,


 

J.C.,


 

Moran,


 

G.F.,


 

1992.


 

Patterns


 

of

 



genetic

 

diversity



 

and


 

nature


of

 

the



 

breeding


 

system


 

in

 



Melaleuca

 

alternifolia



 

(Myrtaceae).

 

Aust.


 

J.

 



Bot.

 

40,



365–375.

Carson,


 

C.F.,


 

Hammer,


 

K.A.,


 

Riley,


 

T.V.,


 

1996.


 

In-vitro


 

activity


 

of

 



the

 

essential



 

oil


 

of

Melaleuca



 

alternifolia

 

against


 

Streptococcus

 

spp.


 

J.

 



Antimicrob.

 

Chemother.



 

37,


1177–1181.

Carson,


 

C.F.,


 

Hammer,


 

K.A.,


 

Riley,


 

T.V.,


 

2006.


 

Melaleuca

 

(Tea


 

tree)


 

oil:


 

a

 



review

 

of



antimicrobial

 

and



 

other


 

medicinal

 

properties.



 

Clin.


 

Microbiol.

 

Rev.


 

19

 



(1),

 

50–62.



Clinical

 

Laboratory



 

Standards

 

Institute



 

(CLSI),


 

2012.


 

Performance

 

standards



 

for


antimicrobial

 

susceptibility



 

testing.


 

In:


 

22

nd



Informational

 

Supplement



 

Testing


M100-S15.

 

CLSI,



 

Wayne,


 

PA.


Craven,

 

L.A.,



 

1999.


 

Behind


 

the


 

names:


 

the


 

botany


 

of

 



tea

 

tree



 

cajuput


 

and


 

niaouli.


 

In:


Southwell,

 

I.,



 

Lowe,


 

R.

 



(Eds.),

 

Tea



 

Tree:


 

The


 

Genus


 

Melaleuca.

 

Harwood


 

Academic


Publishers,

 

Amsterdam,



 

The


 

Netherlands,

 

pp.


 

11–28.


Craven,

 

L.A.,



 

Lepschi,


 

B.J.,


 

1999.


 

An

 



enumeration

 

of



 

the


 

species


 

of

 



Melaleuca

 

(Myr-



taceae)

 

occurring



 

in

 



Australia

 

and



 

Tasmania.

 

Aust.


 

Syst.


 

Bot.


 

12,


 

819–927.


Ebadollahi,

 

A.,



 

2013.


 

Essential

 

oils


 

isolated


 

from


 

Myrtaceae

 

family


 

as

 



natural

 

insec-



ticides.

 

Annu.



 

Rev.


 

Res.


 

Biol.


 

3

 



(3),

 

148–175.



Farag,

 

R.S.,



 

Shalaby,


 

A.S.,


 

El-Baroty,

 

G.A.,


 

Ibrahim,


 

N.A.,


 

Ali,


 

M.A.,


 

Hassan,


 

E.M.,


 

2004.


Chemical

 

and



 

biological

 

evaluation



 

of

 



the

 

essential



 

oils


 

of

 



different

 

Melaleuca



species.

 

Phytotherapy



 

Res.


 

18

 



(1),

 

30–35.



Gupta,

 

N.,



 

Manika,


 

N.,


 

Singh,


 

S.,


 

Singh,


 

S.C.,


 

Pragadheesh,

 

V.S.,


 

Yadav,


 

A.,


 

Chanotiya,

C.S.,

 

2012.



 

Investigation

 

on

 



phenylpropanoids

 

rich



 

Melaleuca

 

decora


 

(Salisb.)

Britt.

 

essential



 

oil.


 

Nat.


 

Prod.


 

Res.


 

26

 



(20),

 

1945–1947.



Hammer,

 

K.A.,



 

Carson,


 

C.F.,


 

Riley,


 

T.V.,


 

2003.


 

Antifungal

 

activity


 

of

 



the

 

components



of

 

Melaleuca



 

alternifolia

 

(tea


 

tree)


 

oil.


 

J.

 



Appl.

 

Microbiol.



 

95,


 

853–860.


Juergens,

 

U.R.,



 

Dethlefsen,

 

U.,


 

Steinkamp,

 

G.,


 

Gillissen,

 

A.,


 

Repges,


 

R.,


 

Vetter,


 

H.,


 

2003.


Anti-inflammatory

 

activity



 

of

 



1,8-cineole

 

(eucalyptol)



 

in

 



bronchial

 

asthma:



 

a

double-blind



 

placebo-controlled

 

trial.


 

Respir.


 

Med.


 

97,


 

250–256.


Kirsch,

 

F.,



 

Buettner,

 

A.,


 

2013.


 

Characterization

 

of

 



the

 

metabolites



 

of

 



1,8-Cineole

transferred

 

into


 

human


 

milk:


 

concentrations

 

and


 

ratio


 

of

 



enantiomers.

 

Metabo-



lites

 

3



 

(1),


 

47–71.


Kumar,

 

A.,



 

Tandan,


 

S.,


 

Yadav,


 

A.,


 

2005.


 

Chemical


 

composition

 

of

 



the

 

essential



 

oil


 

from


fresh

 

leaves



 

of

 



Melaleuca

 

leucadendron



 

L.

 



from

 

north



 

India.


 

J.

 



Essent.

 

Oil



 

Bear


 

Pl.


8

 

(1),



 

19–21.


Miyazawa,

 

M.,



 

Shindo,


 

M.,


 

Shimada,


 

T.,


 

2001.


 

Oxidation

 

of

 



1,8-cineole,

 

the



 

monoter-


pene

 

cyclic



 

ether


 

originated

 

from


 

Eucalyptus

 

polybractea,



 

by

 



cytochrome

 

P450



3A

 

enzymes



 

in

 



rat

 

and



 

human


 

liver


 

microsomes.

 

Drug


 

Metab.


 

Dispos.


 

29

 



(2),

200–205.


Park,

 

H.M.,



 

Kim,


 

J.,


 

Chang,


 

K.S.,


 

Kim,


 

B.S.,


 

Yang,


 

Y.J.,


 

Kim,


 

G.H.,


 

Shin,


 

S.C.,


 

Park,


 

I.K.,


 

2011.


Larvicidal

 

activity



 

of

 



Myrtaceae

 

essential



 

oils


 

and


 

their


 

components

 

against


Aedes

 

aegypti,



 

acute


 

toxicity


 

on

 



Daphnia

 

magna,



 

and


 

aqueous


 

residue.


 

J.

 



Med.

Entomol.


 

48

 



(2),

 

405–410.



Pujiarti,

 

R.,



 

Ohtani,


 

Y.,


 

Ichiura,


 

H.,


 

2011.


 

Physiochemical

 

properties



 

and


 

chemical


composition

 

of



 

Melaleuca

 

leucadendra



 

leaf


 

oil


 

taken


 

from


 

population

 

in

 



Java,

Indonesia.

 

J.

 



Wood

 

Sci.



 

57

 



(5),

 

446–451.



Pujiarti,

 

R.,



 

Ohtani,


 

Y.,


 

Widowati,

 

T.B.,


 

Kasmudjo,

 

2012.


 

Utilization

 

of

 



Melaleuca

 

leu-



cadendron

 

essential



 

oil.


 

Wood


 

Res.


 

J.

 



2

 

(2),



 

94–99.


Sakasegawa,

 

M.,



 

Hori,


 

K.,


 

Yatagai,


 

M.,


 

2003.


 

Composition

 

and


 

antitermite

 

activities



of

 

essential



 

oils


 

from


 

Melaleuca

 

species.


 

J.

 



Wood

 

Sci.



 

49,


 

181–187.


Sciarrone,

 

D.,



 

Ragonese,

 

C.,


 

Carnovale,

 

C.,


 

Piperno,


 

A.,


 

Dugoa,


 

P.,


 

Dugo,


 

G.,


 

Mondello,

L.,

 

2010.



 

Evaluation

 

of

 



tea

 

tree



 

oil


 

quality


 

and


 

ascaridole:

 

a

 



deep

 

study



by

 

means



 

of

 



chiral

 

and



 

multi


 

heartcuts

 

multidimensional



 

gas


 

chromatogra-

phy

 

system



 

coupled


 

to

 



mass

 

spectrometry



 

detection.

 

J.

 



Chromatogr.

 

A



 

1217,


6422–6427.

Silva,


 

C.J.,


 

Barbosa,


 

L.C.A.,


 

Maltha,


 

C.R.A.,


 

Pinheiro,

 

A.L.,


 

Ismail,


 

F.M.D.,


 

2007.


 

Compar-


ative

 

study



 

of

 



the

 

essential



 

oils


 

of

 



seven

 

Melaleuca



 

(Myrtaceae)

 

species


 

grown


in

 

Brazil.



 

Flav.


 

Frag.


 

J.

 



22,

 

474–478.



Silva,

 

C.J.,



 

Barbosa,


 

L.C.A.,


 

Demuner,


 

A.J.,


 

Montanari,

 

R.M.,


 

Pinheiro,

 

A.L.,


 

Dias,


 

I.,


Andrade,

 

N.J.,



 

2010.


 

Chemical


 

composition

 

and


 

antibacterial

 

activities



 

from


the

 

essential



 

oils


 

of

 



Myrtaceae

 

species



 

planted


 

in

 



Brazil.

 

Quim.



 

Nova


 

33

 



(1),

104–108.


Southwell,

 

I.,



 

Russell,


 

M.,


 

Smith,


 

R.L.,


 

Brophy,


 

J.J.,


 

Day,


 

J.,


 

2005.


 

Melaleuca

 

teretifolia,



a

 

novel



 

aromatic


 

and


 

medicinal

 

plant


 

from


 

Australia.

 

Acta


 

Hort.


 

677,


 

79–83.


Southwell,

 

I.A.,



 

Stiff,


 

I.A.,


 

Brophy,


 

J.J.,


 

1992.


 

Terpinolene

 

varieties



 

of

 



Melaleuca.

 

J.



Essent.

 

Oil



 

Res.


 

4

 



(4),

 

363–367.



Trilles,

 

B.L.,



 

Bombarda,

 

I.,


 

Bouraima-Madjebi,

 

S.,


 

Raharivelomanana,

 

P.,


 

Bianchini,

J.P.,

 

Gaydou,



 

E.M.,


 

2006.


 

Occurrence

 

of

 



various

 

chemotypes



 

in

 



Niaouli

 

(Melaleuca



quinquenervia

 

(Cav.)



 

S

 



T.

 

Blake)



 

essential

 

oil


 

from


 

New


 

Caledonia.

 

Flav.


 

Frag.


 

J.

21,



 

677–682.


Verghese,

 

J.,



 

Jacob,


 

C.V.,


 

Kunjunni


 

Kartha,


 

C.V.,


 

McCarron,

 

M.,


 

Mills,


 

A.L.,


 

Whittaker,

D.,

 

1996.



 

Indian


 

tea


 

tree


 

(Melaleuca

 

alternifolia



 

Cheel)


 

essential

 

oil.


 

Flav.


 

Frag.


 

J.

11



 

(4),


 

219–221.


Wheeler,

 

G.S.,



 

Pratt,


 

P.D.,


 

Giblin-Davis,

 

R.M.,


 

Ordung,


 

K.M.,


 

2007.


 

Intraspecific

 

vari-


ation

 

of



 

Melaleuca

 

quinquenervia



 

leaf


 

oils


 

in

 



its

 

naturalized



 

range


 

in

 



Florida,

 

the



Caribbean,

 

and



 

Hawaii.


 

Biochem.


 

Syst.


 

Ecol.


 

35,


 

489–500.

Document Outline



Yüklə 422,06 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2020
rəhbərliyinə müraciət

    Ana səhifə