SHORT REPORT
The article was published by Academy of Chemistry of Globe Publications
www.acgpubs.org/RNP © Published 6 /17/2008 EISSN:
1307-6167
Rec. Nat. Prod
. 2:2 (2008) 33-38
Chemical composition of essential oil of Syzygium guineense
(Willd.) DC. var. guineense (Myrtaceae) from Benin
Jean-Pierre Noudogbessi
1
, Paul Yédomonhan
2
, Dominique C. K.
Sohounhloué
1
, Jean-Claude Chalchat
3*
, Gilles Figuérédo
4
1
Laboratoire d’Etude et de Recherche en Chimie appliquée (LERCA)
Ecole Polytechnique d’Abomey-Calavi, Université d’Abomey-Calavi
01 BP 2009 Cotonou, Republic of Benin
2
Herbier National, Département de Botanique, Faculté des Sciences et Techniques, Université
d’Abomey-Calavi, Republic of Benin
3
Laboratoire de Chimie des Huiles Essentielles, Université Blaise-Pascal de Clermont, Campus des
Cézeaux, 63177 Aubière cedex, France
4
Laboratoire d’Analyse des Extraits Végétaux et des Arômes (LEXVA Analytique)
460 rue du Montant, 63110 Beaumont, France
(Received April 9, 2008; Revised June 2, 2008, Accepted June 5, 2008)
Abstract: Essential oils extracted from dried leaves of Syzygium guineense harvested at Natitingou-Centre,
Péperkou, Tchaourou and Térou were analysed by gas phase chomatography coupled to mass spectrometry (GC-
MS). The main constituents were: caryophyllene oxide (7%),
δ-cadinene (7.5%), viridiflorol (7.5%), epi-α-
cadinol (9.8%),
α-cadinol (12.7%), cis-calamenen-10-ol (14%), citronellyl pentanoate (15.2%), β-caryophyllene
(20.1%) and
α-humulene (39.5%).
Keywords: Syzygium guineense, essential oil, GC-MS, caryophyllene oxide,
δ-cadinene, viridiflorol, epi-α-
cadinol,
α-cadinol, cis-calamenen-10-ol, citronellyl pentanoate, β-caryophyllene, α-humulene.
1. Plant Source
Syzygium guineense
(Myrtaceae) is an odorous species native to the wooded savannahs and
tropical forests of Africa [1]. This short-trunked tree grows widely in northern Benin. Its wild, oval
fruits are edible [1, 2].
It is included among the African plant species that are active against malaria [3]. The bark of
S. guineense
is used in traditional medicine to treat gasto-intestinal upsets and diarrhoea. [4, 5, 6, 7].
*
J-Claude.CHALCHAT@univ-bpclermont.fr
Essential oil of Syzygium guineense
34
In Benin, S. guineense is used to make brushes, for firewood, and for the treatment of mental
disorders and amenorrhoea [1].
The leaves of Syzygium guineense were harvested before flowering in northern Benin at
Natitingou-Centre, Péperkou, Tchaourou and Térou in June 2006. They were identified and certified at
the National Herbarium of the University of Abomey-Calavi
2. Previous Studies
Triterpenes isolated and characterised from the plant are biologically active on bacteria [8].
Tsakala in 1996 showed an activity against strains of Salmonella E., Shigella D., Shigella F., E. coli
and Enterobacter A. [4] of dry aqueous extract obtained after decoction.
In 1987, C. Eyélé Mvé-Mba found large amounts of cis-guaiene (30%) and
β-caryophyllene
(15.7 %) in essential oil from leaves of S. guineense from Gabon [9].
3. Present Study
The leaves were stored in the laboratory at 18-20°C throughout the extraction work. The
essential oils were obtained by water distillation of the leaves (250-300 g) for 6 hours in a Clevenger
type apparatus. They were dried over anhydrous sodium sulphate and analysed by GC-MS. The yield
of essential oil from the leaves of S. guineense was relatively low (Table 1).
GC/MS: The essential oil were analysed on a Hewlett-Packard gas chromatograph Model 5890,
coupled to a Hewlett-Packad MS model 5871, equipped whith a DB5 MS column (30m X 0,25mm;
0,25µm), programming from 50°C (5 min) to 300°C at 5°C/mn, 5 min hold. Helium as carrier gas (1,0
ml/min) ; injection in split mode (1 : 30) ; injector and detector temperature, 250 and 280°C
respectively. The MS working in electron impact mode at 70 eV; electron multiplier, 2500 V; ion
source temperature, 180°C; mass spectra data were acquired in the scan mode in m/z range 33-450.
GC/FID: The essential oil were analysed on a Hewlett-Packard gas chromatograph Model 6890,
equipped whith a DB5 MS column (30m X 0,25mm; 0,25µm), programming from 50°C (5 min) to
300°C at 5°C/mn, 5 min hold. Hydrogen as carrier gas (1.0 mL/min) ; injection in split mode (1 : 60) ;
injector and detector temperature, 280 and 300°C respectively. The essential oil is diluted in hexane:
1/30.
The compounds assayed by GC in the different essential oils were identified by comparing
their retention indices with those of reference compounds in the literature and confirmed by GC-MS
by comparison of their mass spectra with those of reference substances [10-12].
26-46 compounds were determined in the reported essential oils, representing 71.5-96.7% of
total oil content. The main constituents of the essential oils of species was determined to be different.
This variation may be due to different climates, seasons, geographic and soil conditions and harves
periods of the plant.
The main constituents were found to be
α-cadinol (12.7%), cis-calamenen-10-ol (7.1%), epi-
α-muurolol (5.7%), caryophyllene oxide (5.5%), cubenol (5.3%), viridiflorol (3.8%), spathulenol
(3.6%), humulene-1,2-epoxide (3.6%) and
α-muurolol (3.1%) in species collected from Natitingou-
Centre, While cis-calamenen-10-ol (14%), epi-
α-cadinol (9.8%), δ-cadinene (7.5%), epi-α-muurolol
(6.2%),
γ-cadinene (6%), α-humulene (4.3%), cis-β-guaiene (4.1%), β-sinensal (4%) and humulene-
1,2-epoxide (3.8%) from Péperkou (Table 2).
The species collected from Tchaourou was found to be reach for viridiflorol (7.5%),
caryophyllene oxide (7%), humulene-1,2-epoxide (6.4%), trans-sabinene hydrate (6.1%),
α-humulene
(6%),
α-cadinol (3.4%), cadalene (3.2%) and caryophylla-4(14),8(15)-dien-5-α-ol (3.1%). Finally, α-
Noudogbessi et al. , Rec. Nat. Prod. (2008) 2:2 33-38
35
humulene (39.5%),
β-caryophyllene (20.1%) and citronellyl pentanoate (15.2%) were determined
from the species collected from Térou (Table 2).
We note that only the essential oil from Térou contained
β-caryophyllene (20.1%) and
citronellyl pentanoate (15.2%). This pattern was observed for other highly representative compounds
in the other volatile extracts: syn-syn-syn-heliofen-12-al-D (2.2%) and cubenol (5.3%) at Natitingou-
Centre, epi-
α-cadinol (9.8%), cis-β-guaiene (4.1%) and β-sensal (4%) at Péperkou, and trans-sabinene
hydrate (6.1%), cadalene (3.2%), caryophylla-4(14),8(15)-dien-5-
α-ol (3.1%) and ischwarone (2.6%)
at Tchaourou.
We also note that none of the chemical compositions in our study comes close to that reported
by C. Eyélé Mvé-Mba in Gabon, in which
δ-guaiene was preponderant (30%).
This work emphasises the diversity in the chemical composition of essential oils extracted
from the leaves of Syzygium guineense. At this stage it is premature to infer chemotypes. A larger
number of samples from different locations and harvested at different times need to be studied to help
gain a better understanding of the different observed chemical composition patterns in essential oils of
Syzygium guineense.
Table 1. Yields of essential oil of Syzygium guineense from different locations.
Essential oil
Syzygium guineense
Place of harvest
Natitingou-Centre
Péperkou
Tchaourou
Térou
Yield (
×10
-2
%)
9.2
± 1.0
11.0
± 1.0
10.5
± 0.2
10.0
± 0.1
Table 2. Essential oil composition of Syzygium guineense collected from different locations (%)
RI
Compounds
Natitingou-
Centre
Péperkou Tchaourou
Térou
929
α-thujene
-
0.4
-
-
972
sabinene
0.2
-
-
978
1-octen-3-ol
-
-
-
t
983
(2)-dihydro-apofarnesal
-
-
-
t
986
β-pinene
-
0.1
-
-
991
myrcene
-
-
-
0.5
1021 ortho-cymene
-
0.2
0.9
t
1028 sylvestrene
-
4.0
1.4
0.2
1033 (Z)-β-ocimene
-
-
-
t
1044 (E)-β-ocimene
-
-
-
t
1054 γ-terpinene
-
-
-
t
1069 n-octanol
-
-
-
t
1079 para-mentha-2,4(8)-diene
-
-
-
t
1096 linalool
-
0.2
-
0.2
1101 n-nonanal
-
-
-
0.1
1178 naphtalene
0.6
-
0.2
-
1183 para-cymen-8-ol
-
-
0.9
-
Essential oil of Syzygium guineense
36
Table 2. Continued
1191 α-terpineol
-
0.7
-
t
1193 methyl chavicol
-
-
-
0.3
1214 trans-carveol
-
0.2
1.3
-
1239 carvone
-
0.1
-
-
1278 neo-iso-3-thujyl acetate
-
0.2
-
-
1340 α-cubebene
-
0.2
-
-
1354 α-longipinene
-
-
-
0.3
1359 clovene
-
-
-
0.1
1368 α-ylangene
0.4
-
0.4
0.4
1376 α-bourbonene
0.3
0.9
2.2
-
1377 α-copaene
-
1.1
-
0.2
1382 β-panasinsene
1.3
-
-
-
1383 β-elemene
-
0.6
0.8
-
1414 α-cis-bergamotene
-
1.8
-
-
1417 sesquithujene
-
-
0.3
0.1
1423 β-cedrene
-
0.3
-
1425 β
β
β
β-caryophyllene
-
-
-
2 0.1
1451 α
α
α
α -humulene
-
4.3
6.0
39.5
1452 α-neo-clovene
0.6
-
-
1454 allo-aromadendrene
-
-
0.3
-
1456 selina-4(15),7-diene
-
1.9
-
-
1467 sesquisabinene
1.4
-
-
-
1468 γ-gurjunene
-
-
1.1
-
1469 α-acoradiene
-
1.9
-
-
1472 9-epi-(E)-caryophyllene
-
0.2
-
0.1
1475 β-germacrene
-
-
-
0.1
1481 oxydo calamemene 1,11
-
-
0.3
-
1482 γ-himachalene
1.1
-
-
-
1483 β-selinene
-
-
0.6
0.4
1484 β-chamigrene
-
0.7
-
-
1490 α-muurolene
1.1
-
0.7
-
1494 cis-β
β
β
β-guaïene
-
4.1
-
-
1498 α-selinene
-
-
-
0.4
1500 germacrene A
-
-
-
0.1
1504 (E, E)-α-farnesene
-
-
-
0.1
1505 γγγγ -cadinene
2.1
6.0
1.0
0.3
1508 α-farnesene
-
-
-
0.1
1513 trans-calamenene
0.6
-
1.2
1517 δ
δδ
δ-cadinene
-
7.5
1.7
0.1
1520 cis-calamenene
-
1.6
0.8
-
1524 cis-myrtanyle isobutyrate
0.7
-
-
1.8
1528 zonarene
-
0.6
-
-
1532 α-cadinene
-
1.1
-
-
1534 cis-nerolidol
-
-
-
0.1
1537 α-calacorene
-
0.6
1.6
-
1552 cis-dracunculifolol
-
-
-
0.3
1556 γ-calacorene
-
0.2
-
-
1560 germacrene B
1.8
-
-
-
Table 2. Continued
Noudogbessi et al. , Rec. Nat. Prod. (2008) 2:2 33-38
37
1563 ledol
-
0.4
2.9
-
1567 perillyle isobutyrate
0.9
-
-
-
1572 spathulenol
3.6
1.6
-
-
1576
trans-sabinene hydrate
-
-
6.1
-
1577 caryophyllene oxide
5.5
-
7.0
0.1
1580 globulol
-
-
-
3.6
1584 thujopsan-2-α-ol
-
2.6
-
1.8
1586 thujopsan-2-β-ol
-
-
-
0.4
1589 β-copaen-4-α-ol
1.2
0.7
-
-
1598 viridiflorol
3.8
-
7.5
-
1603 humulene-1,2-epoxide
3.6
3.8
6.4
1.4
1610 1,10-di-epi-cubenol
-
1.1
-
1616 citronellyle pentanoate
-
-
-
15.23
1621 syn-syn-syn-heliofen-12-al-D
2.2
-
-
-
1625 1-epi-cubenol
-
1.7
2.0
-
1630 daucol
-
-
-
2.2
1631 caryophylla-4(14),8(15)-dien-5-α
α
α
α -ol
-
-
3.1
-
1636 caryophylla-4(14),8(15)-dien-5-β-ol
-
-
-
1.5
1638 cubenol
5.3
-
-
-
1640 epi-α
α
α
α -cadinol
-
9.8
-
-
1642 epi-α
α
α
α -muurolol
5.7
6.2
1.4
-
1644 selina-3,11-dien-6-α-ol
-
-
-
1.7
1646 α
α
α
α -muurolol
3.1
2.5
-
-
1650 α
α
α
α-cadinol
12.7
-
3.4
0.9
1654 selin-11-en-4-α-ol
2.2
-
-
0.6
1657 14-hydroxy-9-epi-(E)-caryophyllene
-
-
-
0.6
1662 neo-intermedeol
-
-
0.9
-
1665 cis-calamenen-10-ol
7.1
14.0
-
-
1668 trans-calamenen-10-ol
-
0.6
-
-
1672 daucalene
-
0.5
-
-
1677
cadalene
-
-
3.2
-
1679
elemol acetate
-
-
-
0.2
1682
ischwarone
-
-
2.6
-
1687 2-nerolidol acetate
2.6
-
-
0.4
1694 β
β
β
β -sinensal
-
4.0
-
-
1700 10-nor-calamenen-10-one
-
0.2
2.1
-
1705 (E)-aprotone
-
0.1
-
-
1707 (E)-3-butylidene phthalide
-
-
0.5
-
1723 cedr-8(15)-en-9-α-ol acetate
-
-
0.4
-
1761 benzyle benzoate
-
-
1.5
-
1802 nookatone
-
0.1
-
-
2094 methyle linoleate
-
-
-
0.2
Total
71.5
91.8
74.7
96.73
t= trace (
<0, 05 %)
Essential oil of Syzygium guineense
38
References
[1] E. J. Adjanohoun, V. Adjakidjè, M. R. A. Ahyi, L. Aké Assi, A. Akoègninou, J. d’Almeida, F. Apovo, K.
Boukef, M. Chadaré, G. Cusset, K. Dramane, J. Eymé, J.-N. Gassita, N. Gbaguidi, E. Goudoté, S. Guinko,
P. Houngnon, Issa Lo, A. kéita, H. V. Kiniffo, D. Koné-Bamba, A. Musampa Nseyya, M. Saadou, Th.
Sodogandji, S. de Souza, A. Tchabi, C. Zinsou Dossa, Th. Zohoun (1989). Médecine Traditionnelle et
Pharmacopée - Contribution aux études ethnobotaniques et floristiques en République Populaire du Bénin,
ACCT, 359.
[2] G.-A. Ambé (2001). Les fruits sauvages comestibles des savanes guinéennes de Côte-d’Ivoire: état de la
connaissance par une population locale, les Malinké. Biotechnol. Agron. et Soc. Environ. 5(1), 43-58.
[3] P. S. Segawa and J. M. Kasenene (2007). Plants for malaria treatment in Southern Uganda: traditional use,
preference and ecological viability. Journal of Ethnobiology, 27, 110-131.
[4] T. M. Tsakala, O. Penge and K. John (1996). Screening of in vitro antibacterial activity from Syzygium
guineense
(Willd) hydrosoluble dry extract. Ann. Pharm. Fr. 54, 276-279.
[5] F. A. Hamil, S. Apio, N. K. Mubiru, M. Mosango, R. Bukenya-Ziraba, O. W. Maganyi, D. D. Soejarto
(2000). Traditional herbal drugs of southern Uganda, I. Journal of Ethnopharmacology, 70, 281 - 300.
[6] O. G. A. Oluwolé, S. D. Pricilla, D. M. Jerome, P. M. Lydia (2002). Some herbal remedies from Manzini
region of Swaziland. Journal of Ethnopharmacology, 79, 109-112.
[7] M. W. Koné, K. K. Atindehou, H. Tere, D. Traoré, (2002). Quelques plantes médicinales utilisées en
pédiatrie traditionnelle dans la région de Ferkessedougou (Côte-d’Ivoire). Bioterre, Rev. Inter. Sci. de la Vie
et de la Terre, Editions Universitaires de Côte d’Ivoire, N° spécial, 30-36.
[8] J. D.Djoukeng, E. Abou-Mansour, R. Tabacchi, A. L. Tapondjou, H. Bouda, D. Lontsi (2005). Antibacterial
triterpenes from Syzygium guineense (Myrtaceae). Journal of Etnopharmacology, 101, 283-286.
[9] C. Eyele Mve-Mba (1987). Contribution à l’étude chimique des constituants volatils extraits des plantes
aromatiques de l’Afrique subéquatoriales. Thèse de Doctorat, Université de Montpellier II.
[10] P. Rösch, J. Popp, W. Kiefer (1999). Raman and SERS Investigations on Lamiaceae. J. Mol. Struct, 121,
480-481.
[11] R. P. Adams (1989). Identification of essential oils by ion mass spectroscopy. Academy Press, Inc, New-
York.
[12] A. A. Swigar, R. M. Silverstein (1981). Monoterpènes, Infrared, Mass, NMR Spectra and Kovats Indices,
Aldrich Chem. Co. Milwaukee, WI, USA.
© 2008 Reproduction is free for scientific studies
Dostları ilə paylaş: |