Wild radish (Raphanus raphanistrum)



Yüklə 310,55 Kb.
Pdf görüntüsü
tarix04.07.2017
ölçüsü310,55 Kb.

 

 

 



 

 

 



 

Wild radish (Raphanus raphanistrum)

 

 

 



Wild radish is one of the most widespread, damaging 

and difficult to control weeds in southern Australia’s 

cropping systems costing an estimated $210 million 

per year (Madafiglio 2002). A 2001 survey of 

landholders throughout Australia ranked it as the third 

most difficult to control weed (Madafiglio 2002). It is 

common throughout the Murrumbidgee catchment 

(Figure 1). 

 

 

 



Figure 1. Wild radish in a canola crop at flowering. 

 

 



KEY POINTS

 

 



 

Prevent seed production and deplete the seed 

bank. 

 

 



Use an integrated weed management program 

to delay or manage herbicide resistance. 

 

 



Knowledge of the biology and ecology of wild 

radish is essential for effective management. 

 

 



Taxonomy 

 

Wild radish is in the Brassicaceae (mustard) family 



and the Raphanus genus. Related species include 

wild turnip (Brassica tournefortti), shepherd’s purse 

(Capsella bursa-pastoris), sand rocket (Diplotaxis 

tenuifolia), turnip weed (Rapistrum rugosum), 

charlock (Sinapsis arvensis), hedge mustard 

(Sisymbrium officinale), and indian hedge mustard 

(Sisymbrium orientale). Wild radish is also known as 

white weed, jointed charlock, white charlock, wild 

charlock, wild kale, wild turnip, jointed radish and 

cadlock. 

 

 

 

Legislation 

 

Wild radish is a Schedule 4 – Class 4 Noxious Weed 



and “the growth and spread of the plant must be 

controlled according to the measures specified in a 

management plan published by the local control 

authority”. For more information visit 

http://www.dpi.nsw.gov.au/agriculture/noxweed. 

 

Origin, Introduction to Australia and 



Distribution 

 

Wild radish originates from Western Europe to central 



Asia and was introduced into Australia accidentally as 

a contaminant of agricultural produce in the middle of 

the 19

th

 century. 



 

Wild radish is found in all Australian states and 

territories except the Northern Territory. In New South 

Wales it occurs in all cropping areas. 

 

Wild radish is predominantly found in winter crops but 



also on roadsides, in orchards, degraded pastures, 

wastelands and other disturbed habitats. It is found 

less in pastures and undisturbed areas as soil 

disturbance stimulates germination and it is affected 

by grazing and competition with other weed species. 

Wild radish grows over a range of soil types but 

prefers slightly acidic, fertile soils with a high level of 

nitrogen.  

 

Biology and Ecology 

 

Wild radish is a major weed because: 



 

o

 



It has a flexible life cycle 

o

 



It has high genotypic and phenotypic variability 

enabling it to adapt to different environments 

o

 

It is a prolific seed producer 



o

 

The seeds have high longevity and dormancy 



o

 

It has staggered germination 



o

 

It has low requirements for flower initiation 



o

 

It has rapid growth and competes vigorously with 



crops 

o

 



It is easily spread as a contaminant of hay, chaff 

and grain 

o

 

Germination rates of grain contaminated with wild 



radish seeds rapidly decreases 

o

 



Wild radish seeds increases the moisture content 

of harvested grain 

o

 

Fibrous stems choke header combs at harvest 



o

 

It is toxic to stock if consumed in large amounts 



o

 

It has allelopathic activity on some crops 



B

B

B

e

e

e

s

s

s

t

t

t

 

 

 

M

M

M

a

a

a

n

n

n

a

a

a

g

g

g

e

e

e

m

m

m

e

e

e

n

n

n

t

t

t

 

 

 

P

P

P

r

r

r

a

a

a

c

c

c

t

t

t

i

i

i

c

c

c

e

e

e

s

s

s

 

 

 

f

f

f

o

o

o

r

r

r

 

 

 

D

D

D

r

r

r

y

y

y

l

l

l

a

a

a

n

n

n

d

d

d

 

 

 

C

C

C

r

r

r

o

o

o

p

p

p

p

p

p

i

i

i

n

n

n

g

g

g

 

 

 

S

S

S

y

y

y

s

s

s

t

t

t

e

e

e

m

m

m

s

s

s

 

 

 

Photo: Andre

w

 S

torrie



 

 

 



 

 

o



 

It is an alternate host for several pests and 

diseases of common crops 

o

 



It sheds over half of its seeds prior to harvest, 

and 


o

 

Herbicide resistant populations are widespread. 



 

Wild radish can cause significant crop yield losses as 

it establishes quickly, has a fast growth rate and 

competes vigorously. Yield losses depend on wild 

radish density (Table 1) and time of emergence in 

relation to the crop. Wild radish that emerges with the 

crop can cause more than 90% yield loss whereas 

populations that emerge more than 7 weeks later 

cause less than 20% yield loss (Blackshaw 2001). 

 

Table 1. Effect of wild radish population density on crop yield 



loss (Cheam 2005; Hashem, Wilkins & Piper 2001). 

 

 



Wild radish density (plants/m

2

 

2-4 10 25 50 64 75 



Wheat 

 7 


20% 

37% 


 

56% 


Canola 

11% 


   

91% 


 

Lupin 

15% 28% 56% 81% 

 

92% 


 

Wild radish pods shatter into small segments during 

harvest contaminating grain and aiding dispersal. 

When wild radish is stored with grain it releases toxic 

compounds causing grain death. 

 

Wild radish is an alternate host for thrips, flea 



beetles, club root, tobacco streak virus, cucumber 

mosaic virus, blackleg, and the aphid borne viruses 

beet western yellow, cauliflower mosaic and turnip 

mosaic. 


 

Identification 

 

Wild radish cotyledons are heart shaped and hairless 



with long stems (Figure 2). The first true leaves are 

oval shaped, irregularly lobed, have a toothed 

margin, have one separate lobe at the base of the 

leaf and develop into a flat rosette. The lower leaves 

have a strong turnip odour when crushed and are 

covered in prickly hairs. Mature plants are up to 1.5 

m tall. The flowers have four petals, commonly 

yellow or white, but sometimes pink or purple. Wild 

radish has a yellowish brown pod 5-7cm long 

containing 1-10 seeds. The pod breaks up into single 

seeded segments when it is ripe to release the 

yellow or reddish brown seeds. Wild radish has a 

strong tap root over 1m deep allowing it to survive 

periods of moisture stress and regrow following 

slashing or grazing due to root reserves. 

 

 



 

Figure 2. One cotyledon of a wild radish seedling. 

 

Wild radish can be misidentified as charlock (Sinapsis 



arvensis L.), wild turnip (Brassica tournefortii Govan) 

or garden radish (Raphanus sativus L.). In contrast to 

wild radish, wild turnip has irregularly serrated lobes, 

warts on the upper surface of the leaves, the basal 

rosette persists until late in the growing season, it has 

very few stem leaves and the seed pods split length 

wise to release the ripe seeds. Charlock has smaller, 

broader  

flowers, widely spreading sepals and the leaves are 

smoother and somewhat shiny with shallower veins. 

The seed pods of turnip weed contain only 1-3 seeds. 

Garden radish never has yellow flowers and has 

spongy seed pods which lack distinct joints. 

 

Seed Dormancy 

 

Up to 70% of the wild radish seedbank is dormant at 



the start of the winter cropping season. Dormancy is 

due to the seed pod (physical restriction), seed coat 

(chemical inhibition) and embryo. Plants with white or 

purple flowers, from cooler areas and that emerge 

early produce seeds with a higher level of dormancy. 

Prevent these plants setting seed to avoid the addition 

of highly dormant seeds to the seedbank. Wild radish 

seeds commonly remain viable in the soil for 6 years 

but up to 15 years at depth in undisturbed soil 

(Madafiglio 2002; Newman 2003). 

 

Germination and Emergence 

 

Six percent of wild radish emergence occurs in early 



autumn, 73% in late autumn/early winter and 21% in 

late winter/early spring (Cheam & Code 1998). The 

biggest germination flush (up to 800 plants/m

2

) follows 



opening rains and later germinations are smaller (as 

few as 1-10 plants/m

2

) (Cheam & Code 1998; 



Madafiglio 2002). Up to 1800 plants/m

2

 can occur in 



wheat crops however natural thinning occurs at high 

plant densities (Madafiglio 2002). 

 

Wild radish can germinate all year round if moisture is 



adequate however the optimum temperature for 

germination is 20-25°C (ranging from 5°C to 35°C) 

(Cheam & Code 1998). Later emerging cohorts (4 

weeks) can have no noticeable effect on crop growth 

but still produce viable seed. Bare seeds or those in 

thin or damaged pods germinate faster than seeds 

Photo: Andre

w

 S



torrie

 

 

enclosed by thick pods. Plants from larger seeds 



grow more rapidly than from smaller seeds. 

 

Flowering 

 

Wild radish has low requirements for flowering and 



can reproduce in most areas. Flowering occurs from 

late July (4-12 weeks after emergence) and can 

continue for 12-42 weeks. Wild radish is pollinated by 

bees which can transfer genes via pollen over long 

distances. Plants within a population can have 

different flower colour (Figure 3). 

 

 

 



Figure 3. Wild radish flowers and seed pods. 

 

Seed Production and Dispersal 

 

Wild radish produces up to 45000 seeds/m



2

 (Cheam 


& Code 1998). One plant in a wheat crop can 

produce 292 seeds and 52 plants/m

2

 can produce 



17275 seeds/m

2

 (Cheam & Code 1998). Later 



emerging plants have a lower chance of setting 

viable seed and produce less seeds. Figure 4 shows 

wild radish seed pods and seeds at maturity. 

 

 



 

Figure 4. Wild radish seeds and pods at maturity. 

 

Large wild radish plants drop seed at a greater 



distance from the stem of the parent plant resulting in 

a greater dispersal distance. Seed is spread via 

agricultural produce (e.g. in grain and hay), human 

activity (footwear, machinery, and vehicles), livestock 

(hooves), wind and water. 

 

Management 

 

The increasing availability of selective herbicides over 



the past few decades has seen herbicides become the 

most common and effective form of weed control in 

Australian cropping systems. The advantages of 

herbicides have caused over reliance and high 

selection pressure resulting in widespread herbicide 

resistance. The sustainability and profitability of 

farming systems now depends on integrated weed 

management incorporating a range of chemical, 

cultural and biological weed control techniques and a 

proactive approach to weed management (Table 2). 

 

The threshold concept of weed management which 



aims to keep weed levels below an arbitrary threshold 

density (5-10 plants/m

2

) only considers the economic 



effect in the current year rather than the long term 

effect including the consequences of weed seed 

carryover. Alternatively, a population management 

approach aims to reduce the seed bank over time via 

integrated weed management. The threshold is up to 

3 times lower than the economic threshold and aims 

for low or near zero seedbank density which can be 

justified when the long-term economic impacts are 

considered (Madafiglio 2002). 

 

Chemical Options 

 

There are wild radish populations resistant to Group B 



(ALS inhibitors eg chlorsulfuron and imidazolinone), 

Group C (PS II inhibitors eg triazines), Group F 

(carotenoid synthesis inhibitors eg diflufenican) and 

Group I (disruptors of plant cell growth eg 2,4-D) 

herbicides (Hashem, Pathan & French 2006; 

Madafiglio 2002; Newman 2003). Some populations 

are resistant to three of the four groups (Cheam 

2005). An estimated 63% of wild radish populations 

are resistant to Group B herbicides, 60% to 2,4-D 

(Group I) and up to 90% in intensively cropped regions 

to Group C herbicides (Walsh, Friesen & Powles 

2006). 


 

The optimum use for each herbicide needs to be 

considered, eg triasulfuron effectively prevents seed 

set when applied at the reproductive stage in wild 

radish but only provides suppression when applied 

pre-sowing therefore should be used during the 

reproductive stage. For herbicide options visit 

www.dpi.nsw.gov.au/aboutus/resources/majorpubs/gui

des/weed-control-winter-crops. 

 

 

 

 

 



Photo: Andre

w

 S



torrie

Photo: Andre

w

 S

torrie



 

 

 



 

Table 2. Tactics for wild radish management and their likely control rate (Cheam 2005). 

 

Tactic 



Likely control (%) 

(control range) 

Comments 

Burning residues 

70 (20-90) 

Concentrated windrows for hot burn. Fire risk & 

environmental damage. 

Autumn tickle 

45 (15-65) 

Rain following tickle needed. 

Knockdown (non-selective herbicide) 

80 (70-90) 

Late germinations won’t be controlled 

Post-emergent spray (selective herbicide) 

90 (70-99) 

Control weeds early when actively growing. 

Spray-topping (selective herbicide) 

80 (70-95) 

Control regrowth if any. 

Wick wiping 

70 (50-80) 

For low growing pulses. 

Silage and hay cutting 

80 (70-95) 

Cut before seed set. Control regrowth. 

Green/brown manuring 

95 (90-100) 

Brown manuring more effective than green. Hay 

freezing most effective. 

Grazing 


70 (50-80) 

Use spray-grazing technique 

Residue collection at harvest 

75 (65-85) 

Variable results. 

Sow weed free seed 

 

Vital management technique. 



Herbicide tolerant crops 

90 (80-99) 

Herbicide tolerant canola essential for wild radish 

infested paddocks. 

 

 

Herbicide Tolerant Crops 



 

Herbicide tolerant crops such as TT (triazine 

tolerant) canola and Clearfield® (imidazolinone 

tolerant) wheat and canola allow the use of 

alternative herbicides. They provide farmers with 

more cost-effective opportunities for wild radish 

control despite the associated yield and oil penalties, 

lower resistance to blackleg and persistence of triazine 

herbicides in the soil. 

 

Pre-Emergent Herbicides 

 

Knockdown existing wild radish plants prior to sowing 



every year with herbicides or cultivation. See Figure 5 

for options and their efficacy. 

 

 

0



5

10

15



20

25

30



35

40

45



Gl

yp

hos



at

e/N


il

Sp

ray



.Se

ed

/N



il

Gl

yp



hos

ate


/S

pr

ay



.S

ee



(1

 h

our



)

Gl

yp



hos

at

e/S



pr

ay

.Se



ed (

1 da


y)

Gl

yp



ho

sa

te



/S

pr

ay



.S

ee

d (



2 d

ay

s)



Sp

ra

y.



Se

ed

/G



ly

ph

os



at

e (


da

ys



)

S

pra



y.

Se

ed



 +

 Ha


m

m

er



/N

il

S



pr

ay

.S



ee

+ Es



te

r/N


il

Sp

ray



.S

eed +


 D

iu

ron/



N

il

G



ly

pho


sa

te

 +



 H

am

m



er

/N

il



Herbicide treatment

Wi

ld



 radi

s

h



 pl

ant


s

 per pl


ot

Pre-flowering (29th July)

Flowering (9th September)

 

 



Figure 5. The efficacy of knockdown treatments on wild radish populations (Newman 2005). 

 

 

 

Early Post-Emergent Herbicides 

 

The effects of wild radish competition begin early in 



the crop. Yield increases are greatest when wild 

radish is controlled at the 2-5 leaf stage of the crop 

(Table 3) (Cheam & Code 1998). Residual herbicides 

are often preferred due to the staggered germination 

of wild radish. Survivors of pre-emergent and early 

post-emergent herbicide applications should be 

prevented from setting seed in case of resistance. 

 

Table 3. Effect of early and late control of wild radish on 



wheat yield in central west New South Wales (Cheam 2005). 

 

Treatment 



Wheat yield (t/ha)

Unsprayed 

0.14 

Sprayed late (after tillering) 



0.36 

Sprayed early (2-5 leaf) 

1.66 

 

Control options include: 



-

 

a single herbicide application at the vegetative 



stage- essential at high weed densities to 

minimise yield loss; survivors will contaminate 

grain 

-

 



a single herbicide application at the reproductive 

stage- suitable for low weed densities which will 

not cause significant yield loss; will prevent grain 

contamination 

-

  Sequential herbicide applications at the 



vegetative and reproductive stages- to prevent 

yield loss and grain contamination. 

 

In cereal crops, there is a very wide range of 



effective herbicides available for wild radish control. 

Fewer herbicides are available for use in pulse crops. 

The only option for canola is to use herbicide tolerant 

varieties. A number of herbicides are available for wild 

radish control in pastures. 

 

Late Post-Emergent 

 

Application of non-selective herbicides at physiological 



maturity of the crop (crop-topping) can reduce wild 

radish seed set by 50-80% (Newman & Adam 2006). It 

is less effective in wheat than other crops as wild 

radish reaches physiological maturity before wheat. If 

the herbicide is applied when wild radish is at the 

reproductive stage, the wheat will not have reached 

physiological maturity and significant yield losses can 

occur. However if spraying is delayed until the wheat 

reaches physiological maturity, the wild radish would 

have already produced viable seed. Blanket wiping can 

be more effective than crop-topping in reducing wild 

radish seed set but can cause a greater yield loss. 

 

Applying selective herbicides at the reproductive 



stages of wild radish (selective spray-topping) can 

reduce seed set by up to 100% when sprayed 

immediately after pollination and within two weeks of 

flowering (GS 4.9-7.0, bud to mid-flowering) 

(Madafiglio 2002). Five herbicides that consistently 

reduce seed production in wild radish over a range of 

dose rates, developmental stages, geographic 

locations and environmental conditions are triasulfuron 

15g/ha, flumetsulam 20g/ha, MCPA 700g/ha, 

triasulfuron + MCPA 7.5 + 350g/ha and bromoxynil + 

MCPA 140 + 350 g/ha (Madafiglio 2002). To minimise 

seed set, control wild radish before the embryo is 

formed (Table 4). 

 

Table 4. The embryo developmental stages and seed viability (Cheam et al. 2005). 

 

Developmental stage 

Seed viability (%) 

Early flowering/pod development; newly formed thin pods 



Mid-flowering/pod fill; well formed green pods but squashy and watery when pressed 



Embryo formed; pods squashy and watery; new embryo present. 



65 

Late flowering/pod development; pods woody; green/developed embryos present. 



90 

 

 



Cultural Options 

 

Grazing 

 

Wild radish is not preferentially grazed by livestock 



but they will eat it if confined to a heavily infested 

area. Grazing is unlikely to reduce seed production 

unless the stocking rate is very heavy. Spray-grazing 

is effective if high stocking rates are used. Wild 

radish, especially the seed, can be toxic to livestock. 

 

Tillage 

 

Cultivating 1-2cm deep following opening rains can 



increase seedling emergence in the first wild radish 

cohort from 2.5 plants/m

2

 to 160 plants/m



2

 

(Madafiglio 2002). Conversely, deep burial below 



10cm can reduce germination by 61% (Table 5) 

(Madafiglio 2002). Following deep burial, cultivations  

 

should be shallow to avoid bringing the seeds up to 



a depth suitable for germination. Options for rapid 

depletion of the wild radish seed bank include: 1) 

shallow cultivation for two consecutive years 

followed by minimum disturbance and 2) 

mouldboard ploughing followed by direct drilling or 

shallow cultivation in subsequent years. Mouldboard 

ploughing should only be used every 8-10 years with 

conservation tillage practiced in between. In the  

 

absence of cultivation, seeds which remain on the  



surface of the soil have a reduced level of 

germination and quickly lose viability. 

 

 


 

 

 



 

 

Table 5. Effect of tillage operation on wild radish density 



(Cheam & Code 1998). 

 

Tillage operation 



Wild radish density 

(plants/m

2

Mouldboard ploughing 

90 

Direct drilling 



207 

Cultivation (disc 5cm) 

323 

 

Hygiene 



 

Thorough cleaning of machinery and equipment, 

sowing clean seed from wild radish free areas, 

avoiding buying hay or chaff from wild radish infested 

areas and quarantining stock that have recently been 

in infested areas are vital for reducing wild radish 

spread. 

 

Swathing (Windrowing) 

 

Wild radish seeds are often green when canola crops 



are harvested causing contamination of canola seed. 

Swathing will desiccate the wild radish pods while 

minimising yield losses from shattering caused by 

delayed harvesting. This will not impact on the level 

of weed seed carryover. 

 

Burning 

 

A temperature of 500°C for 10 seconds or 400°C for 



60 seconds is needed to kill 100% of wild radish 

seeds present (Walsh, Friesen & Powles 2005). This 

is usually achieved only by burning narrow windrows 

rather than standing crop stubble (Figure 6). Burning 

narrow windrows has other benefits such as reducing 

erosion by leaving majority of the paddock unaffected 

but also has disadvantages including not affecting 

seed that is shed prior to harvest which is between 

the windrows. 

 

0



10

20

30



40

50

60



70

80

90



100

Standing Stubble

Conventional Windrow

Narrow windrow



Wheat Stubble Treatment

W

il

d

 r

a

d

ish se

ed sur

v

iv

a

l (

%

)

 

 



Figure 6. Survival of wild radish seeds after burning standing 

wheat stubble and windrows (Walsh, Newman & Chitty 2005). 

Crop Species, Cultivar and Density

 

 

A non-crop phase should be included at least once 



every four years in your rotation and preferably 2 in 

every 5 years (Newman 2003). Tight rotations such 

as the wheat-lupin rotation commonly used in 

Western Australia have been shown to favour wild 

radish. 

 

Cereals are more competitive and have more 



effective, cheaper in-crop herbicide options than 

pulses therefore wild radish should be controlled in 

the cereal phase of the rotation (Table 6). There are 

also competitive differences within crop species, eg 

the lupin variety Mandelup is more competitive than 

Belara and Tanjil (Hashem, Pathan & French 2006). 

 

Table 6. Yield loss of various crops due to a wild radish 

population of 10 plants/m

2

 (Cheam 2005; Hashem, Wilkins & 

Piper 2001). 

 

Crop 



Yield loss (%) 

Wheat 


Canola 


11 (2-4 plants/m

2



Lupin 

28 


Faba bean 

36 


Field pea 

36 


Lentil 42 

Chickpea 

49 

 

Table 7 shows the effect of various rotations on a 



wild radish population after 2-4 cycles (8-10 years). 

The model used assumes a seedbank germination 

of 33% in year 1, 20% in year 2, 7% in year 3, 3% in 

year 4 and 37% being lost, a herbicide efficacy of 

90% in lupins, 95% in cereals and 100% in spray 

grazed pastures. 

 

A high seeding rate, narrow row spacing and 



precision fertiliser placement should all be used to 

maximise the competitive ability of the crop. 

 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



Table 7. The effect of crop rotation on the wild radish seedbank (Bowran 2001). 

 

 

 



 

 

Rotation 



Seedbank relative to starting population (plants/m

2

Lupin:Wheat (4 cycles) 

159 

Lupin:Wheat:Wheat (3 cycles) 



23 

Lupin:Wheat:Canola:Wheat (2 cycles) 

10 

Lupin:Wheat:Green Manure:Wheat (2 cycles) 



Lupin:Pasture:Wheat:Wheat (2 cycles) 

0.6 

Lupin:Pasture:Pasture:Wheat:Wheat (2 cycles) 



0.14 

Pasture:Wheat:Wheat (3 cycles) 

0.05 

Pasture:Pasture:Wheat:Wheat (2 cycles) 



0.01 

 

 

Slashing 

 

Slashing or mowing promotes regrowth of wild radish 



so green or brown manuring is a better option. 

Slashing can prevent seed set however it must be 

done regularly due to the long flowering season of wild 

radish. 


 

Hay and Silage Making

 

 

Hay or silage making prevents wild radish plants from 



setting seed however any regrowth must be controlled. 

It is especially valuable where resistance is present but 

the short term economic loss needs to be considered 

before implementing this option. 

 

Fertiliser

 

 

Nitrate fertiliser reportedly stimulates recruitment of 



wild radish seeds by over 100% compared to no 

nitrogen fertiliser however this is not currently used as 

a management option in Australia (Madafiglio 2002). 

 

Green/Brown Manuring 

 

Green and brown manuring prevents seed set and 



increases available nutrients and organic matter in a 

paddock. Compare the short term economic loss to the 

long term benefits of a lower weed density when 

considering this option. Its value increases when high 

weed densities and herbicide resistance are present. 

 

Hand Weeding 

 

Hand weeding is effective when infestations are light. 



Plants should be removed at least 2 weeks prior to 

flowering. 

 

Seed Catching

 

 

Seed catching and seed destruction at harvest can 



remove up to 95% of wild radish seeds (Newman 

2003). The ‘Rotamill’ developed by Harvestaire® 

destroys up to 100% of seeds as they exit the  

 

harvester (Newman & Walsh 2004). Baling chaff and 



straw out of the harvester is also very effective 

however has associated problems such as handling 

large numbers of bales. 

Multispecies RIM & WEEDEM

 

 

Weed management decisions should be based on 



seedbank dynamics and short and long term 

profitability. Multispecies RIM is a bioeconomic 

resistance management program used as decision 

support tool for annual ryegrass and wild radish 

management. It assesses the likely biological and 

economic impacts of control strategies by simulating 

the effects on seed numbers and economic turnover. 

For more information contact your local adviser or 

Robert Barrett-Lennard (rbl@cyllene.uwa.edu.au). 

 

Biological Options 

 

Biocontrol of wild radish is risky as the plant is 



closely related to many agricultural and horticultural 

species. Evidence suggests wild radish is attacked 

by redlegged earth mites, thrips, flea beetles, white 

Italian snails, downy mildew, white rust, black rot, 

club root, turnip mosaic virus, tobacco streak virus, 

cucumber mosaic virus and blackleg. Wild radish 

seeds are also attacked by ants, microfauna and 

microbial decay. 

 

References 

 

Blackshaw, RE 2001, ‘Influence of wild radish on yield and quality 



of canola’, Weed Science, vol. 50, No. 3, pp. 344-349. 

 

Bowran, D 2001, ‘Wild radish – the implications for our rotations’, 



Agribusiness Crop Updates 2001, Department of Agriculture 

Western Australia. 

 

Cheam, A 2005, Integrated Weed Management in Australian 



Cropping Systems: A Training Resource for Farm Advisers

Cooperative Research Centre for Australian Weed Management, 

pp. 202-207. 

 

Cheam, A, Lee, S, Lemerle, D, Koetz, E & Storrie, A 2005, ‘When 



is the right time to maximise seed set control of wild radish’, 

Agribusiness Crop Updates 2005, Department of Agriculture 

Western Australia. 

 

Cheam, AH & Code, GR 1998, The Biology of Australian Weeds



vol. 2, ed. F.D. Panetta, R.H. Groves & R.C.H. Shepherd, R.G. & 

F.J. Richardson, Melbourne. 

 

Hashem, A, Wilkins, N & Piper, T 2001, ‘Competitiveness of wild 



radish in a wheat-lupin rotation’, Agribusiness Crop Updates 

2001, Department of Agriculture Western Australia. 

 

Hashem, A, Pathan, S & French, B 2006, ‘Wild radish-lupin 



competition: difference in the competitive ability of lupin cultivars’, 

Proceedings from the Fifteenth Australian Weeds Conference

Weed Management Society of South Australia, pp. 391-394. 

 

Madafiglio, GP 2002, ‘Population management of Raphanus 



raphanistrum L. (Wild radish) by regulating seed production’, PhD 

thesis, University of Western Sydney. 



 

 

 



 

 

 



Newman, P 2003, ‘The looming threat of wild radish’, Agribusiness 

Crop Updates 2003, Department of Agriculture Western Australia. 

 

Newman, P & Walsh, M 2004, ‘How effectively can weed seeds be 



removed at harvest?’, Agribusiness Crop Updates 2004, Department 

of Agriculture Western Australia. 

 

Newman, P 2005, ‘Knockdowns for large wild radish, single and 



double’, Agribusiness Crop Updates 2005, Department of Agriculture 

Western Australia. 

 

Newman, P & Adam, G 2006, ‘Crop-topping of wild radish in lupins 



and barley, how long is a piece of string?’, Agribusiness Crop 

Updates 2006, Department of Agriculture Western Australia. 

 

Walsh, M, Newman, P & Chitty, D 2005, ‘Destroy wild radish and 



annual ryegrass seeds by burning narrow windrows’, Western 

Australian No Till Farmers Association magazine. 

 

Walsh, MJ, Friesen, S & Powles, SB 2006, ‘Frequency, 



distribution and mechanisms of herbicide resistance in Western 

Australian wild radish (Raphanus raphansitrum) populations: a 

review’,  Proceedings from the Fifteenth Australian Weeds 

Conference, Weed Management Society of South Australia, pp. 

484-487. 

 

Yu, Q, Cairns, A & Powles, SB 2004, ‘Paraquat resistance in a 



population of Lolium rigidum’,  Functional Plant Biology, vol. 31, 

pp. 247-254. 

 

 

Further Information: 



www.murrumbidgee.cma.nsw.gov.au or www.dpi.nsw.gov.au 

 

 



Disclaimer 

 

The information contained in this publication is based on knowledge and understanding at the time of writing (2008). However, because of advances in knowledge, 



users are reminded of the need to ensure that information upon which they rely is up to date and to check currency of the information with the appropriate officer of 

New South Wales Department of Primary Industries/Murrumbidgee Catchment Management Authority or the user’s independent adviser. 

 

The product trade names in this publication are supplied on the understanding that no preference between equivalent products is intended and that the inclusion of a 



product name does not imply endorsement by NSW Department of Primary Industries or Murrumbidgee CMA over any equivalent product from another manufacturer. 

 

ALWAYS READ THE LABEL 



Users of agricultural chemical products must always read the label and any Permit, before using the product, and strictly comply with directions on the label and the 

conditions of any Permit. Users are not absolved from compliance with the directions on the label or the conditions of the permit by reason of any statement made or 

omitted to be made in this publication. 

 

 



 

 

 



This project has been funded 

through the Australian and 

NSW Governments’ National 

Action Plan for Salinity and 

Water Quality

 

 




Yüklə 310,55 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2020
rəhbərliyinə müraciət

    Ana səhifə