1-amaliy ishi mavzu: Algoritmlarni loyixalashga. Algoritm korrekt va samaradorligini baholash. Kvadrat tenglama ildizlarini aniqlash algoritmi. Uchburchak yuzasi uchun Geron formulasi. Ishdan maqsad


Kubik tenglama ildizlarini aniqlash



Yüklə 0,76 Mb.
səhifə2/3
tarix07.04.2023
ölçüsü0,76 Mb.
#94578
1   2   3
1-amaliyot.kvadrat va kubik tenglamalar

Kubik tenglama ildizlarini aniqlash
Kub tenglamaning yechimi:
Ushbu tajriba ishida kubik tenglamani Vieta-Kardano usuli yordamida yechish algoritmi keltirilgan. Dastur faol(0 dan farqli) koeffitsientlar holati uchun yozilgan (ildizlar murakkab bo'lishi mumkin).
Kub tenglamasi quyidagicha yoziladi:
x3+a*x2+b*x+c=0.
Haqiqiy koeffitsientlar bo'lsa, uning ildizlarini topish uchun birinchi navbatda quyidagilar hisoblanadi:
Q=(a2-3b)/9, R=(2a3-9ab+27c)/54.
Bundan tashqari, agar R2t=acos(R/sqrt(Q3))/3,
x1=-2*sqrt(Q)cos(t)-a/3,
x2=-2*sqrt(Q)cos(t+(2*pi/3))-a/3,
x3=-2*sqrt(Q)cos(t-(2*pi/3))-a/3.
R2>=Q3 bo'lgan holatda, bitta (umumiy holat) yoki ikkita (degenerativ holatlar) haqiqiy ildiz mavjud. Haqiqiy ildizdan tashqari, ikkita kompleks ildizi mavjud. Ularni topish uchun quyidagilar hisoblab chiqiladi (Kardano formulasi):
A=-sign(R)[|R|+sqrt(R2-Q3)]1/3,
A!=0
 bo’lsa B=Q/A yoki A=0 bo’lganda B=0 .
Haqiqiy ildiz quyidagicha bo'ladi:
x1=(A+B)-a/3.
Kompleks ildizlar:
x2,3=-(A+B)/2-a/3 + i*sqrt(3)*(A-B)/2
Agar A=B bo'lsa, unda kompleks ildizlar haqiqiyga aylanadi:
x2=-A-a/3.
Cardano va Vieta formulalari maxsus funktsiyalardan foydalanishni talab qiladi va agar koeffitsientlari juda ko'p o'zgarmaydigan kub tenglamaning ildizlarini hisoblashning katta seriyasini amalga oshirish kerak bo'lsa, boshqa tez tezkor algoritmdan foydalanish kerak: (Kardano-Vyeta yordamida dastlabki yaqinlashuvni topish bilan) Nyuton usuli yoki boshqa iterativ usullar
Quyida haqiqiy koeffitsientli kub tenglamaning ildizlarini topish dasturi keltirilgan:

(agar tenglama koeffitsientlari bu ko’rinishda bo’lmasa shu holatga keltiriladi)
#include /* for sqrt(), fabs(), pow(), cos(), acos(). */
#include
//#define M_PI (3.141592653589793)
#define M_2PI (2.*M_PI)
using namespace std;
int Cubic(double *x,double a,double b,double c) {
double q,r,r2,q3;
q=(a*a-3.*b)/9.; r=(a*(2.*a*a-9.*b)+27.*c)/54.;
r2=r*r; q3=q*q*q;
if(r2double t=acos(r/sqrt(q3));
a/=3.; q=-2.*sqrt(q);
x[0]=q*cos(t/3.)-a;
x[1]=q*cos((t+M_2PI)/3.)-a;
x[2]=q*cos((t-M_2PI)/3.)-a;
return(3);
}
else {
double aa,bb;
if(r<=0.) r=-r;
aa=-pow(r+sqrt(r2-q3),1./3.);
if(aa!=0.) bb=q/aa;
else bb=0.;
a/=3.; q=aa+bb; r=aa-bb;
x[0]=q-a;
x[1]=(-0.5)*q-a;
x[2]=(sqrt(3.)*0.5)*fabs(r);
if(x[2]==0.) return(2);
return(1);
}
}
int main(){
double a,b,c;
double x[3];
cin>>a>>b>>c;
int d = Cubic(x,a,b,c);
cout<<"Ildizlar soni: "< for(int i = 0; i cout<<"x"< //cout< }
}
Natija:




Yüklə 0,76 Mb.

Dostları ilə paylaş:
1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin