Berilgan funksiyalardan variant tanlanib, olingan variantlar ustida quyidagi amallar bajariladi
səhifə 7/7 tarix 22.10.2023 ölçüsü 2,62 Mb. #159705
Berilgan funksiyalardan variant tanlanib , olingan variantlar ustida quyidagi amallar bajariladi:
1-berilgan f 1 (x) funktsiya ustida deskretlash , kvatlash va kodlash amalga oshiriladi
Berilgan f 1 (x) va f 2 (x) funktsiya svyortka qilinadi
Berilgan f 1 (x) va f 2 (x) funktsiya korrelyatsiya qilinadi
Olingan natijalar va dastlabki natijalar bilan birgalikda grafik orqali ifodalanadi.
Izoh: N hamma uchun jurnaldagi tartib raqami. Berilgan oraliq intervallariga qattiy rioya qilinishi shart.
Variantlar
№
f1 (x)
f2 (x)
Interval
1.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(x/π)-2sin(π/x)
x (0;2*N),
2.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(x2/π)-sin(π/xπ)
x (0;2*N),
3.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(xπ)+2sin(x)
x (0; π /2*N),
4.
y=cos(x*π/4)+sin(2*π/N*x)
z=2cos(xπ)+sin(π/x)
x (0; π /2*N),
5.
y=cos(x*π/4)+sin(2*π/N*x)
z=3cos(x/π)-2sin(x/π)
x (0; π /3*N),
6.
y=cos(x*π/4)+sin(2*π/N*x)
z=5cos(x2/π)-2sin(π/x)
x (0; π /3*N),
7.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(x2/π)-sin(x)
x (0; π /4*N),
8.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(2x)+2sin(π/x)
x (0; π /4*N),
9.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(x/3π)+2sin(2x)
x (0; π /5*N),
10.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(xπ)+2sin(x)
x (0; π /5*N),
11.
y=cos(x*π/4)+sin(2*π/N*x)
z=2cos(x)+sin(π/x)
x (0;1/4*N),
12.
y=cos(x*π/4)+sin(2*π/N*x)
z=3cos(x)-2sin(x/π)
x (0;1/4*N),
13.
y=cos(x*π/4)+sin(2*π/N*x)
z=5cos(x/π)-2sin(x)
x (0;1/5*N),
14.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(x)-sin(x/ π)
x (0;1/5*N),
15.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(2x/π) +2sin(x)
x (0;1/8*N),
16.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(xπ)+2sin(2x/π)
x (0;1/8*N),
17.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(x/π)+2sin(xπ)
x (0; π /6*N),
18.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(x+2/π)+2sin(2x/π)
x (0; π /6*N),
19.
y=cos(x*π/4)+sin(2*π/N*x)
z=cos(π6/x)+2sin(x3/π)
x (0; π /8*N),
20.
y=cos(x*π/4)+sin(2*π/N*x)
z=2cos(π/x)+sin(x)
x (0; π /8*N),
21.
y=cos(x*π/4)+sin(2*π/N*x)
z=3cos(2x/π)-sin(π/x)
x (0; π /8*N),
Dostları ilə paylaş: