1. Darbu yig’indilari va ularning xossalari. Aniq integralning mavjudlik sharti



Yüklə 251,99 Kb.
səhifə3/4
tarix03.06.2023
ölçüsü251,99 Kb.
#124237
1   2   3   4
1 Darbu yig’indilari va ularning xossalari Aniq integralning m

2-teorema. Agar [a;b] da chegaralangan f(x) funksiya shu kesmada chekli sondagi uzilish nuqtalariga ega bo‘lsa, u holda f(x) funksiya integrallanuvchi bo‘ladi.
Isboti. f(x) funksiyaning uzilish nuqtalari c1, c2, … , ck bo‘lsin. Ixtiyoriy kichik >0 olamiz va har bir uzilish nuqtasining uzunligi dan kichik bo‘lgan
(c1-1; c1+1), (c2-2; c2+2), … , (ck-k; ck+k)
atroflarini ajratib olamiz.
[a;b] kesmadan bu oraliqlarni chiqarib tashlasak, k+1 ta kesma qoladi. Ularning har birida f(x) funksiya uzluksiz, hamda Kantor teoremasiga ko‘ra tekis uzluksiz funksiya bo‘ladi. Shuning uchun uzilish nuqtalarni o‘rab oluvchi atroflarning tashqarisida yotuvchi oraliqlar uchun shunday mavjudki, ulardan olingan va tengsizliklarni qanoatlantiruvchi va lar uchun

tengsizlik bajariladi. Endi

belgilashni kiritib, [a;b] kesmani uzunligini dan kichik bo‘lgan , j=1, 2, … , n qismiy oraliqlarga bo‘lamiz. Shunda 2 xil oraliqlarga ega bo‘lamiz:

  1. uzilish nuqtalarini o‘rab oluvchi atroflarning tashqarisida yotuvchi oraliqlar – ularda funksiyaning tebranishi  bo‘ladi.

  2. ajratilgan atroflar bilan umumiy nuqtalarga ega bo‘lgan oraliqlar – bu oraliqlarda funksiyaning tebranishi M-m=[a;b] dan katta bo‘la olmaydi.

Shunday qilib, ni yuqoridagi ikki xil qismiy oraliqlarga mos ravishda guruhlab, ikkita yig‘indiga ajratamiz:
.
Bunda

,
chunki 2-xil qismiy oraliqlardan (cj-j; cj+j) da to‘la joylashganlarning uzunliklari yig‘indisi k dan kichik, qisman yotganliklariniki 2k dan kichik bo‘ladi. Shuning uchun, agar bo‘lsa,
ya’ni da va (1) shartga ko‘ra f(x) funksiya berilgan kesmada integrallanuvchi bo‘ladi.

Yüklə 251,99 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin