Variant 20
1. Determinantni hisoblang:
a) → = 2×4×4 + (-1)×(-2)×3 + (-1)×3×(-2) - 3×4×(-1) – (-2)×(-2)×2 – 4×3×(-1) = 60
b) A11=4 =8; A12=-2× =0; A13= =0; A14= - =-6
A11 + A12 + A13 + A14 = 8 + 0 + 0 – 6 = 2
c) → A11= =69; A12=-2× =34; A13=4× =-84; A14=-7 =-77
A11 + A12 + A13 + A14 = 69 + 34 – 84 -77= -58
2. Berilgan matritsalar
A= va B= yordamida quyidagilarni toping:
a) 5A – 2B → - =
b) AB – BA → - = - = =
c) A-1= = 3; A11=0; A12=-6; A13=3; A21=1; A22=0; A23=0; A31=-1; A32=15; A33=-6
Agebraik to’ldiruvchilardan matritsa yasaymiz: endi buni transponerlaymiz:
Bu matritsaga dastlabki matritsaning determinantini teskari ko’paytiramiz: 1/3× =
3. Matritsali tenglamani ishlang.
a) × X = → X= -1 × = × =
b) ×X× = → X= -1× -1× =
4. f(x)=2x2-3x+4 f(A) ni toping agar A=
2× × - 3× + 4× = - + =
5. Matritsalarni ko’paytiring:
C= ; D= ; K=
Matritsalarni bir-biriga ko’paytirish uchun birinchi matritsa ustunlar souni ikkinchi matritsa satrlar soniga teng bo’lishi kerak. Shunda, birinchi matritsaning mos satr elementlarini ikkinchi matritsaning mos ustun elementlariga ko’paytirib qo’shib qoyish kifoya. Yuqoridagi matritsalardan, C×B, D×K va K×D larni toppish mumkin.
C×B= =
D×K= =
K×D= =
6. Tenglamalar sistemasini Kramer usulida yeching.
a) → = ∆=6
= ∆1=12