1. Uslub (metod) tushunchasi uni turlari. Uquv-bilish faoliyatini tashkil qilish uslubi



Yüklə 71,5 Kb.
səhifə3/4
tarix18.12.2022
ölçüsü71,5 Kb.
#76061
1   2   3   4
Boshlang‘ich sinflarda matematika o‘qitish metodlari

4. Maktab hujjatlarini o‘rganish.
Pedagogik tadqiqotlarning keng tarqalgan metodlaridan biri o‘quvchilar ishlari va hujjatlarini o‘rganishdan iborat. O‘quvchilarning ishlari ularni dasturning ayrim bo‘limlari bo‘yicha tayyorgarlik darajasini aniqlash, o‘qitishning ma’lum davri davomida o‘sishi va rivojlanishlarini kuzatish imkonini beradi. Masalan, maxsus yozma va grafik ishlar shu maqsadda o‘tkaziladiki, bularni tekshirish natijasida bolalarning matematikadan olgan bilimlarini va malakalari aniq ko‘rinishi kerak; ma’lum vaqt oralig‘ida bunday maxsus ishlarni bajartirib turish, o‘quvchilar olg‘a siljiyotganini va qanday darajada siljiyotganini ko‘rsatadi. O‘quvchilarning yozma ishlarida yo‘l qo‘ygan xatolarini tahlil qilish muhim ahamiyatga ega. Bunday tahlil butun sinf o‘quvchilarining duch keladigan murakkab qiyinchiliklarini, shuningdek, o‘quvchilarning matematikani o‘zlashtirishlaridagi induvidual xususiyatlarini aniqlash imkonini beradi.
O‘quv hujjatlari (o‘quv rejasi, dasturi, metodik ishlar hujjatlari, hisobotlar va h.k.) o‘quv tarbiyaviy ishlarni rivojlanish jarayoni va holatini aks ettiradi.
O‘quvchilarning daftarlarini o‘rganish, ilmiy tadqiqot ishi uchun ahamiyatga ega. Uzoq vaqt davomida o‘quvchilar jamoasini qarab chiqish va tahlil qilish o‘qituvchi ishi tizimini, o‘quvchilar ishining xususiyatlarini ochishga yordam beradi.
5. Suhbat metodi.
Pedagogik tadqiqotlarda suhbat metodidan ham foydalaniladi. Bu metoddan foydalanish kuzatishdan olingan ma’lumotlarni to‘ldiruvchi va aniqlovchi materiallar olish, topshirishlar bajarish imkonini beradi. Bu metod muvaffaqiyatining asosi bolalar bilan aloqa o‘rnatilishi, ular bilan bemalol erkin muloqotda bo‘lish imkoniyatidan iborat
Suhbat uchun uning maqsadini belgilash, dastur ishlanmasi, yo‘nalishi va metodikani asoslash juda muhimdir. Suhbat metodi bevosita berilgan savollarga javoblarning ishonchliligini tekshirish imkonini beruvchi bevosita va bilvosita savollarni kiritishni nazarda tutadi.
Suhbat metodi o‘qituvchilarga, ota-onalarga qaratilgan bo‘lishi ham mumkin, bu holda aytib o‘tilgan ehtiyotkorlikning hojati yo‘q, shu sababli, bunda tadqiqotchining suhbatdoshiga nisbatan munosabati ochiq-oydin bo‘lishi mumkin.
6. Anketalashtirish so‘rovnoma o‘tkazish metodi.
Biror masalaga nisbatan fikrlarni aniqlash, ba’zi faktlarni to‘plash talab qilingan hollarda anketalashtirish metodidan foydalaniladi. Agar javoblar og‘zaki olinadigan bo‘lsa, u holda bu javoblar qarorga to‘la yoziladi. Ko‘pchilik bir savolning o‘ziga javob berganda, buning ustiga har kim mustaqil javob bersa, yozma anketalash qimmatli bo‘ladi.
Anketadan foydalanilganda quyidagi ikki talabga amal qilish zarur:
1) anketada savollar kam bo‘lishi kerak;
2) savollar shunday tuzilishi kerakki, ularni hamma bir xil tushinsin, ular aniq (mujmal bo‘lmagan) javoblarni talab qilsin.
Ilmiy - pedagogik tadqiqotlarda nazariy metodlar etakchi o‘rin tutadi. Har bir tadqiqotda oldin o‘rganish ob’ektini tanlash, nazariy tahlil asosida ob’ekt qaysi faktlarda bog‘liqligini aniqlash va tekshirish uchun ulardan etakchilarini tanlash kerak. Тadqiqotning maqsad va vazifalarini yaqqol aniqlash gipotezasini tuzish shunga mos ravishda tadqiqot o‘tkazish metodikasini ishlab chiqish, tadqiqotning borishida olingan faktlarni tushuntirish va tahlil qilish usullarini tanlash va xulosalarni ifodalash lozim. Bu ishlarning hammasini bajarish uchun tadqiq qilinayotgan masalaning ilgari va hozirgi vaqtdagi nazariyasi va amaliyotini yorituvchi adabiy manbalarni o‘rganish va tahlil qilish kerak. Nazariy metodlar boshqa metodlar bilan bir qatorda matematika metodikasiga oid har bir tadqiqodga qo‘llaniladi. Har qanday ilmiy muammolarni hal qilishda eng oldin qilinayotgan masalaga oid hamma adabiyotni o‘rganish va nazariy tadqiqot o‘tkazish kerak. Busiz maqsadga yo‘naltirilgan bo‘lmaydi, sinash bazan xatolar yo‘li bilan olib boriladi, shu bilan birga har doim ham qo‘yilgan masalaning to‘la jalb qilinishiga olib kelinavermaydi. Shu bilan birga adabiyotni o‘rganmay turib va nazariy tahlil qilmay turib, fanda izchillik ta’minlanmaydi.
Matematika metodikasiga doir tadqiqotlarda boshqa metodlardan ham foydalaniladi. Odatda bu metodlarning hammasidan birgalikda foydalanish, bu xil natijalarning ishonchli bo‘lishini ta’minlaydi.
Hozirgi zamon didaktikasida o‘qitish metodlari klassifikasiyasiga har xil yondoshish mavjud. Bizning fikrimizga eng maqsadga muvofiq, har xil metodlarni o‘z ichiga olgan klassifikasiyadir.
Yuqorida keltirilgan ta’rifdan o‘qitish metodlari o‘qituvchi va o‘quvchilarning birgalikdagi faoliyatidan iborat ekani ko‘rinadi.
Binobarin, bunday faoliyat tashkil qilish rag‘batlantirish va nazorat qilishni nazarda tutadi, shunga ko‘ra o‘qitish metodlari ham uchta katta guruhga bo‘linadi: o‘quv faoliyatini tashkil qilish metodlari; o‘quv faoliyatini rag‘batlantirish metodlari; o‘quv faoliyatini samaradorligini nazorat qilish metodlari.
O‘quv bilish faoliyatini tashkil qilish metodlarini bir nechta guruhlarga bo‘lib klassifikasiya qilish mumkin.
I. O‘quvchilar bilim oladigan manbalar bo‘yicha:
Og‘zaki, ko‘rsatmali va amaliy metodlar (tushuntirish, suhbat, hikoya, kitob bilan ishlash va h.k).
Ko‘rsatmali metodlar (tevarak atrofdagi predmetlar va hodisalarni kuzatish, ularning modellari va tasvirlarini qarash) o‘quvchilarning amaliy ishlari
II. O‘quvchilar fikrining yo‘nalishi bo‘yicha:
Induksiya, deduksiya va analogiya.
III. Pedagogik ta’sir, boshqarishning darajasi, o‘quvchi-larning o‘qishda mustaqilliklar darajasi bo‘yicha:
O‘qituvchi boshchiligida bajariladigan o‘quv ishi metodi;
O‘quvchilarning mustaqil ishlari metodi.
IV. O‘quvchilarning mustaqil faolliklari darajasi bo‘yicha:
Izohli-illyustrativ metod;
Reproduktiv metod: bilimlarni muammoli bayon qilish metodi;
qisman izlanish va tadqiq qilish metodi.

I. Og‘zaki, ko‘rsatmali va amaliy metodlar


1) Og‘zaki metodlar – qisqa muddat ichida hajmi bo‘yicha eng ko‘p ma’lymotlarni berish, o‘quvchilar oldiga muammolar qo‘yish, ularni hal qilish yo‘llarini ko‘rsatish imkonini beradi.
Bu metodlar o‘quvchilarning abstrakt tafakkurlarining rivojlanishiga sharoit yaratadi.
a) Тushuntirish. Bilimlarni tushuntirish metodining mohiyati shundan iboratki, bunda o‘qituvchi materialni bayon qiladi, o‘quvchilar esa uni, ya’ni bilimlarni tayyor holda qabul qilib olishadi.
Materialning bayoni aniq, tushunarli, qisqa bo‘lishi kerak. Boshlang‘ich matematika kursining bir qator masalalarini qarashda bilimlarning izchil bayoni zarur. Misollar: 1. ko‘p xonali sonni bir xonali songa yozma bo‘lish algoritmi
(656:4; 1896:6)...
2. 1 yoki 0 ga ko‘paytirish hollari. Bolalarda ko‘paytirish amali haqida tarkib topgan bilimlar 1 yoki 0 ga ko‘paytirish holini tushunib olishlariga yordam bermaydi. o‘qituvchi bilimlarni tayyor holda yetkazishi kerak.
O‘qituvchining bilimlarni tushuntirish metodidan ma’lu-motlar to‘g‘rsidagi nazariy materiallar ishlatish bo‘yicha yo‘l-yo‘riq berishda foydalaniladi.
b) Suhbat bu eng ko‘p tarqalgan va yetakchi o‘qitish metodlaridan biri bo‘lib, darsning har xil bosqichlarida, har xil o‘quv maqsadlarida qo‘llanishi mumkin, ya’ni uyga berilgan topshiriqlarni va mustaqil ishlarni tekshirishda, yangi materialni tushuntirishda, mustahkamlash va takrorlashda qo‘llanilishi mumkin.
Suhbat – o‘qitishning savol-javob metodidir, bunda o‘qituvchi o‘quvchilarning bilimlarini qay darajada o‘zlashtir-ganliklari va amaliy tajribalariga tayangan holda, maxsus tanlangan savollar va ularga beriladigan javoblar yo‘li bilan o‘quvchilarni qo‘yilgan ta’limiy va tarbiyaviy masalalarini hal qilishga olib keladi.
Metodik adabiyotda suhbat metodidan ko‘pincha matematik tushunchalar bilan tanishtirilayotganda (son, arifmetik amallar va hokazo) qonuniyatlar tipidagi bilimlar (arifmetik amallar xossalari va ular komponentlari bilan natijalari orasidagi bog‘lanishlar) tanishtirishda foydalanish tavsiya etiladi.
O‘qitishda suhbatning ikki xilidan, ya’ni katexezik va evrestik suhbatdan foydalaniladi.
Katexezik suhbat – shunday savollar tizimi asosida tuziladiki, bu savollar ilgari o‘zlashtirilgan bilimlar, ta’riflarni oddiygina qayta eslatishni talab etadi.
Bu suhbatdan asosan bilimlarni tekshirish va baholashda yangi materialni mustahkamlashda va takrorlashda foydalaniladi.
2.Ko‘rsatmali metodlar.
O‘qitishning ko‘rsatmali metodlari – o‘quvchilarga kuzatishlar asosida bilimlar olish imkonini beradi. Kuzatish hissiy tafakkurning faol shaklidir, bundan o‘qitishda, ayniqsa, boshlang‘ich sinflarda keng foydalaniladi. Tevarak atrofdagi predmet va hodisalar va ularning turli-tuman modellari (har xil tipdagi ko‘rsatma-qo‘llanmalar) kuzatish ob’ektlari hisoblanadi. o‘qitishning ko‘rsatmali metodlarini o‘qitishning og‘zaki metodlaridan ajratib qo‘yib bo‘lmaydi. Ko‘rsatma-qo‘llanmalarni namoyish qilishni har doim o‘qituvchining va o‘quvchilarning tushuntirishlari bilan birgalikda olib boriladi. O‘qituvchining so‘zi bilan ko‘rsatma vositalardan birgalikda foydalanishning 4 ta asosiy shakli aniqlangan:
1) o‘qituvchi so‘zlar yordamida o‘quvchilarning kuzatishlarini boshqaradi;
2) og‘zaki tushuntirishlar ob’ektning bevosita ko‘rin-maydigan tomonlari haqida ma’lumotlar beradi;
3) Ko‘rsatma-qo‘llanmalari o‘qituvchining og‘zaki tushuntirishlarini tasdiqlovchi yoki konkretlashtiruvchi illyustrasiya bo‘lib xizmat qiladi;
4) o‘qituvchi o‘quvchilar kuzatishlarini umumlashtiradi va umumiy xulosa chiqaradi.
3. Amaliy metodlar. Malaka va ko‘nikmalarni shakllantirish va mukammalashtirish jarayoni bilan bog‘liq bo‘lgan metodlar o‘qitishning amaliy metodlari hisoblanadi. Xususan, bunday metodlar jumlasiga yozma va og‘zaki mashqlar, amaliy va laboratoriya ishlari, mustaqil ishlarning ba’zi turlari kiradi. Mashqlar asosan mustahkamlash va bilimlarni tatbiq qilish, malaka va ko‘nikmalarni shakllantirish metodi sifatida qo‘llaniladi.
Mashq deb biror amalni, shu amalni o‘zlashtirish yoki mustahkamlash maqsadida rejali ravishda tashkil qilingan takroriy bajarishga aytiladi. Mashqlar tayyorlash, mashq qildirish va ijodiy mashqlarga katta ahamiyat beriladi. Ijodiy xaraktyerdagi mashqlarga masalan, masala va misollarni turli usullar bilan yechish, ifoda bo‘yicha masala tuzish, qisqa yozuv, chizmaga ko‘ra masala tuzish, muammoli masalalarni yechish mashqlari va boshqa mashqlar kiradi.

INDUKSIYA, DEDUKSIYA, ANALOGIYA


Bu uch metod yangi bilimlarni egallashning asosida yotuvchi xulosalarning xususiyatlariga qarab bir-biridan farq qilinadi.


Induksiya metodi bilishning shunday yo‘liki, bunda o‘quvchining fikri birlikdan umumiylikka, xususiy xulosalardan umumiy xulosaga o‘sib boradi. Induktiv xulosa – xususiydan umumiyga qarab boradigan xulosadir. Bu metoddan foydalanib biror qonuniyatni ochish yoki qoidani chiqarish uchun o‘qituvchi misollar, masalalar, ko‘rsatmali materiallarni puxtalik bilan tanlaydi.
Boshlang‘ich sinflarda induksiya metodi bilan uzviy bog‘liq holda deduksiya metodidan ham keng foydalaniladi. Boshlang‘ich sinflarning yangi o‘qitish dasturi talablariga o‘tishi munosabati bilan deduksiya metodidan foydalanish chegaralari ancha kengaydi. Odatdagi metodika deyarli induktiv metoddan foydalanishni, deduktiv metoddan foydalanishning cheklanganligini uqtirib turardi.
Deduksiya metodi bilishning shunday yo‘liki, bu yo‘l umumiyroq bilimlar asosida yangi xususiy bilimlarni
olishdan iboratdir.
1+2=3 3 - 2=1 3 - 1=2
Deduksiya bu, umumiy qoidalardan xususiy misollarga va konkret qoidalarga o‘tishdir.
Induktiv va deduktiv xulosalarga misollar keltiramiz. Birinchi sinf o‘quvchilariga yig‘indi bilan qo‘shiluvchi orasidagi bog‘lanishni tushuntirish uchun bolalarni xulosaga induktiv yo‘l bilan olib kelamiz. ko‘rsatmalilikdan (har xil doirachalardan) foydalanib, oldin hamma doirachalar qanchaligi topiladi (1 +2 =3)
Shundan keyin 1 ta qizil doiracha (birinchi qo‘shiluvchini ifodalovchi) surib qo‘yiladi, bunda bolalar 2 ta ko‘k doiracha ya’ni ikkinchi qo‘shiluvchi qolishiga ishonch hosil qilishadi. (3 – 2 = 1) Shundan keyin 3 ta doirachadan 2 ta ko‘k doiracha (ikkinchi qo‘shiluvchini ifodalovchi) ayirilsa, 1 ta qizil doiracha, ya’ni birinchi qo‘shiluvchi qolishiga ishonch hosil qiladilar (3 –1 =2). Shundan keyin boshqa sonlar hamda boshqa ko‘rsatmali materiallar bilan bir qatorda shunday mashqlar bajariladi va bolalarning o‘zlari ushbu umumiy xulosani ifodalashadi: agar birinchi qo‘shiluvchi, ayirilsa, ikkinchi qo‘shiluvchi qoladi, agar yig‘indidan ikkinchi qushiluvchi ayirilsa, birinchi qo‘shiluvchi qoladi.
Bolalar tomonidan induktiv yo‘l bilan chig‘arilgan xulosa 5,6,7,8,9 sonlarini ayirish qaralayotganda deduktiv mulohazalar yuritish uchun foydalaniladi.

Yüklə 71,5 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin