12. The Plant Sources of Propolis
The current opinion is that propolis is collected from resins of trees such as poplars and conifers, and
therefore propolis is sometimes classified after the name of the source plant [2–4]. The plant source is
identified by observing the collection activities of bees, and comparing the chemical profiles of propolis
and plant materials. Other researchers found that honeybees collect plant material by cutting fragments
of vegetative tissues, so the anatomical characteristics of plant tissue in the propolis can be used as
evidence of propolis origin [65].
As mentioned in the last section, Populus species are considered to be the main plant origin of
propolis all over the world, especially in the temperate zone. Most propolis collected from Europe, North
America, non-tropical region of Asia, New Zealand [3] and even Africa (mainly the east area of Nile
Delta region) [35] contains the characteristic poplar chemical profile: high level of flavanones, flavones,
low phenolic and their esters [98].
In the tropical and subtropical area, there are few poplar trees. Honeybees have to search for new
plant source for propolis. For the propolis collected from southeast of Brazil, Baccharis dracunculifolia
turns out to be the main botanical source [66,99]. Artepillin C as the salient chemical composition makes
it easy to distinguish this propolis from other types of propolis. It is reported that propolis from
Venezuela, Amazon and Cuba contains prenylated benzophenones, which is originated from the
exudates of Clusia flower [9,100].
Macaranga plants have been demonstrated to be the plant source of Taiwan [95], Okinawan [101]
that was classified as Pacific propolis [3]. High concentration of diterpenoids in Mediterranean
propolis may originate from Cupressus plants for Sicilian, Cretan propolis [29] and Maltese propolis [74],
Pinus plants for Greek propolis [39]. In Kangaroo Island (Australia), bees collect propolis from the
sticky exudate on the stem shoots and seed pods of an endemic Australian plant, Acacia paradoxa [45].
Red Brazilian propolis and Nepalese propolis have various biologically active neoflavonoids that
primarily come from the genus Dalbergia [24,50].
However, some of plant sources are just surmised by observing the bees’ foraging behaviors,
not comparing chemical identity of secondary plant metabolites in propolis and in the plant source.
For example, Eucalyptus species are considered as the source plant in Australia, south Anatolia
(Turkey) [102], Ismailia (Egypt) [61] and Brazil
, but no real proof has been presented for this origin.
Therefore, it still needs further study to compare chemical compounds in propolis and the plants, in order
to confirm the exact botanic origin.
13. Summary and Future Perspectives
The biological activities of propolis are attributed to a variety of major chemical constituents
including phenolic acids, phenolic acid esters, flavonoids, and terpenoids, such as CAPE, artepillin C,
caffeic acid, chrysin, and galangin quercetin, apigenin, kaempferol, pinobanksin 5-methyl ether,
pinobanksin, pinocembrin, pinobanksin 3-acetate.
Over 500 compounds have been identified in propolis from many countries up to 2012. They belong
to flavonoids, phenylpropanoids, terpenoids, stilbenes, lignans, coumarins and their prenylated derivatives.
Molecules 2014, 19 19626
However, other common chemical components such as alkaloids, iridoids have not been reported in
propolis. This characteristic is often explained by the plant sources.
We recommend that bee varieties and subspecies need to be considered together with geographical
factors and plant species around the beehive in future studies on propolis. The priorities of future
research lie on the influence of species and behaviour on propolis, together with feeding experiments to
identify the plant part source, which will advance our understanding of the chemistry and quality of
propolis, as well as honey bee biology. Characterization of propolis from various locations and plant
sources is warranted to define acceptable quantitative standards for different types of propolis.
Furthermore, the biological activities of each type of propolis need to be correlated with their chemical
composition, and eventually, standardized products should be used in clinical studies.
Acknowledgments
This work was supported by the Grant from the National Natural Science Foundation of China
(No. 31272512) and the earmarked fund for Modern Agro-industry Technology Research System from
the Ministry of Agriculture of China (CARS-45).
Author Contributions
S.H.: conception, data collection, and manuscript preparation; C.P.Z.: review of the manuscript;
K.W.: data collection; G.Q.L.: manuscript preparation and review of the manuscript; F.L.H.: conception
and reciew of the manuscript.
Conflicts of Interest
The authors declare no conflict of interest.
References
1.
Mello, B.C.B.S.; Hubinger, M.D. Antioxidant activity and polyphenol contents in Brazilian green
propolis extracts prepared with the use of ethanol and water as solvents in different pH values.
Int. J. Food Sci. Technol. 2012, 47, 2510–2518.
2.
Kosalec, I.; Bakmaz, M.; Pepeljnjak, S.; Vladimir-Knezevic, S. Quantitative analysis of the
flavonoids in raw propolis from northern Croatia. Acta Pharm. 2004, 54, 65–72.
3.
Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant
origin. Apidologie 2000, 31, 3–15.
4.
Burdock, G. Review of the biological properties and toxicity of bee propolis (propolis).
Food Chem. Toxicol. 1998, 36, 347–363.
5.
Li, Y.J.; Chen, M.L.; Xuan, H.Z.; Hu, F.L. Effects of encapsulated propolis on blood glycemic
control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus rats. Evid. Based
Complement. Alternat. Med. 2012, 2012, 981896.
6.
Zhu, W.; Chen, M.L.; Shou, Q.Y.; Li, Y.H.; Hu, F.L. Biological activities of Chinese propolis
and Brazilian propolis on streptozotocin-induced type 1 diabetes mellitus in rats. Evid. Based
Complement. Alternat. Med. 2011, 2011, 468529.
Molecules 2014, 19 19627
7.
Zhu, W.; Li, Y.H.; Chen, M.L.; Hu, F.L. Protective effects of Chinese and Brazilian propolis
treatment against hepatorenal lesion in diabetic rats. Hum. Exp. Toxicol. 2011, 30, 1246–1255.
8.
Hu, F.L.; Hepburn, H.R.; Li, Y.H.; Chen, M.; Radloff, S.E.; Daya, S. Effects of ethanol and
water extracts of propolis (bee glue) on acute inflammatory animal models. J. Ethnopharmacol.
2005, 100, 276–283.
9.
De Castro Ishida, V.F.; Negri, G.; Salatino, A.; Bandeira, M.F.C.L. A new type of Brazilian
propolis: Prenylated benzophenones in propolis from Amazon and effects against cariogenic
bacteria. Food Chem. 2011, 125, 966–972.
10. Wang, K.; Ping, S.; Huang, S.; Hu, L.; Xuan, H.Z.; Zhang, C.P.; Hu, F.L. Molecular mechanisms
underlying the in vitro anti-inflammatory effects of a Ffavonoid-rich ethanol extract from Chinese
propolis (poplar type). Evid. Based Complement. Alternat. Med. 2013, 2013, 127672.
11. Xuan, H.Z.; Zhao, J.; Miao, J.Y.; Li, Y.J.; Chu, Y.F.; Hu, F.L. Effect of Brazilian propolis on
human umbilical vein endothelial cell apoptosis. Food Chem. Toxicol. 2011, 49, 78–85.
12. Xuan, H.Z.; Zhu, R.L.; Li, Y.J.; Hu, F.L. Inhibitory effect of Chinese propolis on
phosphatidylcholine-specific phospholipase C activity in vascular endothelial cells. Evid. Based
Complement. Alternat. Med. 2010, 2011, 985278.
13. Ito, J.; Chang, F.R.; Wang, H.K.; Park, Y.K.; Ikegaki, M.; Kilgore, N.; Lee, K.H. Anti-AIDS
agents. 48. 1 Anti-HIV activity of moronic acid derivatives and the new melliferone-related
triterpenoid isolated from Brazilian propolis. J. Nat. Prod. 2001, 64, 1278–1281.
14. Amoros, M.; Simoes, C.M.; Girre, L.; Sauvager, F.; Cormier, M. Synergistic effect of flavones and
flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity
of propolis. J. Nat. Prod. 1992, 55, 1732–1740.
15. Sforcin, J.M.; Orsi, R.O.; Bankova, V. Effect of propolis, some isolated compounds and its source
plant on antibody production. J. Ethnopharmacol. 2005, 98, 301–305.
16. Bueno-Silva, B.; Alencar, S.M.; Koo, H.; Ikegaki, M.; Silva, G.V.; Napimoga, M.H.; Rosalen, P.L.
Anti-inflammatory and antimicrobial evaluation of neovestitol and vestitol isolated from brazilian
red propolis. J. Agric. Food Chem. 2013, 61, 4546–4550.
17. Ghisalberti, E. Propolis: A review. Bee World 1979, 60, 59–84.
18. Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity.
Apidologie 1995, 26, 83–99.
19. Fernandes-Silva, C.; Freitas, J.; Salatino, A.; Salatino, M. Cytotoxic activity of six samples of
Brazilian propolis on Sea Urchin (Lytechinus variegatus) Eggs. Evid. Based Complement.
Altern. Med. 2013, 2013, 619361.
20. Salatino, A.; Fernandes-Silva, C.C.; Righi, A.A.; Salatino, M.L.F. Propolis research and the
chemistry of plant products. Nat. Prod. Rep. 2011, 28, 925–936.
21. Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent progress of propolis for its biological
and chemical compositions and its botanical origin. Evid. Based Complement. Alternat. Med.
2013, 2013, 697390.
22. Bankova, V.S. Recent trends and important developments in propolis research. Evid. Based
Complement. Alternat. Med. 2005, 2, 29–32.
23. Silici, S.; Kutluca, S. Chemical composition and antibacterial activity of propolis collected by
three different races of honeybees in the same region. J. Ethnopharmacol. 2005, 99, 69–73.
Molecules 2014, 19 19628
24. Alencar, S.; Oldoni, T.; Castro, M.; Cabral, I.; Costa-Neto, C.; Cury, J.; Rosalen, P.; Ikegaki, M.
Chemical composition and biological activity of a new type of Brazilian propolis: Red propolis.
J. Ethnopharmacol. 2007, 113, 278–283.
25. Campo Fernandez, M.; Cuesta-Rubio, O.; Rosado Perez, A. GC-MS determination of isoflavonoids
in seven red Cuban propolis samples. J. Agric. Food Chem. 2008, 56, 9927–9932.
26. Maciejewicz, W. Isolation of flavonoid aglycones from propolis by a column chromatography
method and their identification by GC-MS and TLC methods. J. Liq. Chromatogr. Relat. Technol.
2001, 24, 1171–1179.
27. Zhang, C.; Huang, S.; Wei, W.; Ping, S.; Shen, X.; Li, Y.; Hu, F. Development of High-Performance
Liquid Chromatographic for Quality and Authenticity Control of Chinese Propolis. J. Food Sci.
2014, 79, C1315–C1322.
28. Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.
Flavonoids: A review of probable mechanisms of action and potential applications. Am. J.
Clin. Nutr. 2001, 74, 418–425.
29. Popova, M.; Chinou, I.; Marekov, I.; Bankova, V. Terpenes with antimicrobial activity from
Cretan propolis. Phytochemistry 2009, 70, 1262–1271.
30. Righi, A.A.; Alves, T.R.; Negri, G.; Marques, L.M.; Breyer, H.; Salatino, A. Brazilian red
propolis: Unreported substances, antioxidant and antimicrobial activities. J. Sci. Food Agric. 2011,
91, 2363–2370.
31. Inui, S.; Shimamura, Y.; Masuda, S.; Shirafuji, K.; Moli, R.T.; Kumazawa, S. A new prenylflavonoid
isolated from propolis collected in the Solomon Islands. Biosci. Biotechnol. Biochem. 2012, 76,
1038–1040.
32. Raghukumar, R.; Vali, L.; Watson, D.; Fearnley, J.; Seidel, V. Antimethicillin-resistant
Staphylococcus aureus (MRSA) activity of 'pacific propolis' and isolated prenylflavanones.
Phytother. Res. 2010, 24, 1181–1187.
33. Cao, Y.; Wang, Y.; Yuan, Q. Analysis of flavonoids and phenolic acid in propolis by capillary
electrophoresis. Chromatographia 2004, 59, 135–140.
34. Usia, T.; Banskota, A.H.; Tezuka, Y.; Midorikawa, K.; Matsushige, K.; Kadota, S. Constituents of
Chinese propolis and their antiproliferative activities. J. Nat. Prod. 2002, 65, 673–676.
35. Hegazi, A.G.; El Hady, F.K.A. Egyptian propolis: 3. Antioxidant, antimicrobial activities and
chemical composition of propolis from reclaimed lands. Z. Naturforsch. C 2002, 57, 395–402.
36. Li, F.; Awale, S.; Tezuka, Y.; Esumi, H.; Kadota, S. Study on the constituents of Mexican propolis
and their cytotoxic activity against PANC-1 human pancreatic cancer cells. J. Nat. Prod. 2010, 73,
623–627.
37. Petrova, A.; Popova, M.; Kuzmanova, C.; Tsvetkova, I.; Naydenski, H.; Muli, E.; Bankova, V.
New biologically active compounds from Kenyan propolis. Fitoterapia 2010, 81, 509–514.
38. Falcão, S.I.; Vilas-Boas, M.; Estevinho, L.M.; Barros, C.; Domingues, M.R.; Cardoso, S.M.
Phenolic characterization of Northeast Portuguese propolis: Usual and unusual compounds.
Anal. Bioanal. Chem. 2010, 396, 887–897.
39. Melliou, E.; Chinou, I. Chemical analysis and antimicrobial activity of Greek propolis.
Planta Med. 2004, 70, 515–519.
Molecules 2014, 19 19629
40. Li, F.; He, Y.M.; Awale, S.; Kadota, S.; Tezuka, Y. Two new cytotoxic phenylallylflavanones
from Mexican propolis. Chem. Pharm. Bull. 2011, 59, 1194–1196.
41. Shrestha, S.P.; Narukawa, Y.; Takeda, T. Chemical constituents of Nepalese propolis (II).
Chem. Pharm. Bull. 2007, 55, 926–929.
42. Kumazawa, S.; Goto, H.; Hamasaka, T.; Fukumoto, S.; Fujimoto, T.; Nakayama, T. A new
prenylated flavonoid from propolis collected in Okinawa, Japan. Biosci. Biotechnol. Biochem.
2004, 68, 260–262.
43. Chen, C.N.; Wu, C.L.; Shy, H.S.; Lin, J.K. Cytotoxic prenylflavanones from Taiwanese propolis.
J. Nat. Prod. 2003, 66, 503–506.
44. Li, F.; Awale, S.; Tezuka, Y.; Kadota, S. Cytotoxic constituents from Brazilian red propolis and
their structure-activity relationship. Bioorg. Med. Chem. 2008, 16, 5434–5440.
45. Tran, V.H.; Duke, R.K.; Abu-Mellal, A.; Duke, C.C. Propolis with high flavonoid content
collected by honey bees from Acacia paradoxa. Phytochemistry 2012, 81, 126–132.
46. Piccinelli, A.L.; Campo Fernandez, M.; Cuesta-Rubio, O.; Márquez Hernández, I.; de Simone, F.;
Rastrelli, L. Isoflavonoids isolated from Cuban propolis. J. Agric. Food Chem. 2005, 53,
9010–9016.
47. Christov, R.; Trusheva, B.; Popova, M.; Bankova, V.; Bertrand, M. Chemical composition of
propolis from Canada, its antiradical activity and plant origin. Nat. Prod. Res. 2006, 20, 531–536.
48. Sha, N.; Guan, S.-H.; Lu, Z.-Q.; Chen, G.-T.; Huang, H.-L.; Xie, F.-B.; Yue, Q.-X.; Liu, X.;
Guo, D.-A. Cytotoxic constituents of Chinese propolis. J. Nat. Prod. 2009, 72, 799–801.
49. Lotti, C.; Campo Fernandez, M.; Piccinelli, A.L.; Cuesta-Rubio, O.; Hernández, I.M.; Rastrelli, L.
Chemical constituents of red Mexican propolis. J. Agric. Food Chem. 2010, 58, 2209–2213.
50. Awale, S.; Shrestha, S.P.; Tezuka, Y.; Ueda, J.Y.; Matsushige, K.; Kadota, S. Neoflavonoids and
related constituents from Nepalese propolis and their nitric oxide production inhibitory activity.
J. Nat. Prod. 2005, 68, 858–864.
51. Shrestha, S.P.; Narukawa, Y.; Takeda, T. Chemical constituents of Nepalese propolis: Isolation of
new dalbergiones and related compounds. J. Nat. Med. 2007, 61, 73–76.
52. Oliveira, A.P.; Franca, H.; Kuster, R.; Teixeira, L.; Rocha, L. Chemical composition and
antibacterial activity of Brazilian propolis essential oil. J. Venom. Anim. Toxins Incl. Trop. Dis.
2010, 16, 121–130.
53. Kartal, M.; Kaya, S.; Kurucu, S. GC-MS analysis of propolis samples from two different regions
of Turkey. Z. Naturforsch. C 2002, 57, 905–909.
54. Melliou, E.; Stratis, E.; Chinou, I. Volatile constituents of propolis from various regions of
Greece-Antimicrobial activity. Food Chem. 2007, 103, 375–380.
55. Trusheva, B.; Todorov, I.; Ninova, M.; Najdenski, H.; Daneshmand, A.; Bankova, V. Antibacterial
mono-and sesquiterpene esters of benzoic acids from Iranian propolis. Chem. Cent. J. 2010, 4, 8.
56. Wiryowidagdo, S.; Simanjuntak, P.; Heffen, W.L. Chemical composition of propolis from
different regions in Java and their cytotoxic activity. Am. J. Biochem. Biotechnol. 2009, 5, 180.
57. Popova, M.P.; Graikou, K.; Chinou, I.; Bankova, V.S. GC-MS profiling of diterpene compounds
in Mediterranean propolis from Greece. J. Agric. Food Chem. 2010, 58, 3167–3176.
58. Pereira, A.S.; Nascimento, E.A.; Aquino Neto, F. Lupeol alkanoates in Brazilian propolis.
Z. Naturforsch. C 2002, 57, 721–726.
Molecules 2014, 19 19630
59. Márquez Hernández, I.; Cuesta-Rubio, O.; Campo Fernández, M.; Rosado Pérez, A.;
Montes de Oca Porto, R.; Piccinelli, A.L.; Rastrelli, L. Studies on the constituents of yellow Cuban
propolis: GC-MS determination of triterpenoids and flavonoids. J. Agric. Food Chem. 2010, 58,
4725–4730.
60. Li, F.; Awale, S.; Zhang, H.; Tezuka, Y.; Esumi, H.; Kadota, S. Chemical constituents of propolis
from Myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line.
J. Nat. Prod. 2009, 72, 1283–1287.
61. El Hady, F.K.A.; Hegazi, A.G. Egyptian propolis: 2. Chemical composition, antiviral and
antimicrobial activities of East Nile Delta propolis. Extraction 2000, 57, 386–394.
62. Dos Santos Pereiraa, A.; de Miranda Pereirab, A.F.; Trugob, L.C.; de Aquino Netoa, F.R.
Distribution of Quinic Acid Derivatives and Other Phenolic Compounds in Brazilian Propolis.
Z. Naturforsch. C 2003, 58, 590–593.
63. Abu-Mellal, A.; Koolaji, N.; Duke, R.K.; Tran, V.H.; Duke, C.C. Prenylated cinnamate and
stilbenes from Kangaroo Island propolis and their antioxidant activity. Phytochemistry 2012, 77,
251–259.
64. Camargo, M.S.; Prieto, A.M.; Resende, F.A.; Boldrin, P.K.; Cardoso, C.R.; Fernández, M.F.;
Molina-Molina, J.M.; Olea, N.; Vilegas, W.; Cuesta-Rubio, O. Evaluation of estrogenic,
antiestrogenic and genotoxic activity of nemorosone, the major compound found in brown Cuban
propolis. BMC Complement. Altern. Med. 2013, 13, 1–8.
65. Teixeira, É.W.; Negri, G.; Meira, R.M.; Salatino, A. Plant origin of green propolis: Bee behavior,
plant anatomy and chemistry. Evid. Based Complement. Alternat. Med. 2005, 2, 85–92.
66. Salatino, A.; Teixeira, É.W.; Negri, G. Origin and chemical variation of Brazilian propolis.
Evid. Based Complement. Alternat. Med. 2005, 2, 33–38.
67. Marcucci, M.; Ferreres, F.; García-Viguera, C.; Bankova, V.; De Castro, S.; Dantas, A.;
Valente, P.; Paulino, N. Phenolic compounds from Brazilian propolis with pharmacological
activities. J. Ethnopharmacol. 2001, 74, 105–112.
68. Kumazawa, S.; Hayashi, K.; Kajiya, K.; Ishii, T.; Hamasaka, T.; Nakayama, T. Studies of the
constituents of Uruguayan propolis. J. Agric. Food Chem. 2002, 50, 4777–4782.
69. Matsui, T.; Ebuchi, S.; Fujise, T.; Abesundara, K.J.; Doi, S.; Yamada, H.; Matsumoto, K.
Strong antihyperglycemic effects of water-soluble fraction of Brazilian propolis and its bioactive
constituent, 3, 4, 5-tri-O-caffeoylquinic acid. Biol. Pharm. Bull. 2004, 27, 1797–1803.
70. Marcucci, M.C.; Ferreres, F.; Custódio, A.R.; Ferreira, M.; Bankova, V.S.; García-Viguera, C.;
Bretz, W.A. Evaluation of phenolic compounds in Brazilian propolis from different geographic
regions. Z. Naturforsch. C 2000, 55, 76–81.
71. Castro, M.L.; Nascimento, A.M.; Ikegaki, M.; Costa-Neto, C.M.; Alencar, S.M.; Rosalen, P.L.
Identification of a bioactive compound isolated from Brazilian propolis type 6. Bioorg. Med. Chem.
2009, 17, 5332–5335.
72. Trusheva, B.; Popova, M.; Koendhori, E.B.; Tsvetkova, I.; Naydenski, C.; Bankova, V. Indonesian
propolis: Chemical composition, biological activity and botanical origin. Nat. Prod. Res. 2011, 25,
606–613.
73. Hegazi, A.G.; Abd El Hady, F.; Abd Allah, F. Chemical composition and antimicrobial activity of
European propolis. Z. Naturforsch. C 2000, 55, 70–75.
Molecules 2014, 19 19631
74. Popova, M.; Trusheva, B.; Antonova, D.; Cutajar, S.; Mifsud, D.; Farrugia, C.; Tsvetkova, I.;
Najdenski, H.; Bankova, V. The specific chemical profile of Mediterranean propolis from Malta.
Food Chem. 2011, 126, 1431–1435.
75. Crane, E. Beekeeping: Science, Practice and World Recourses; Heinemann: London, UK, 1988.
76. Uzel, A.; Sorkun, K.; Önçağ, Ö.; Çoğulu, D.; Gençay, Ö. Chemical compositions and
antimicrobial activities of four different Anatolian propolis samples. Microbiol. Res. 2005, 160,
189–195.
77. Negri, G.; Marcucci, C.; Salatino, A.; Salatino, M.L.F. Comb and propolis waxes from Brazil.
J. Braz. Chem. Soc. 2000, 11, 453–457.
78. Negri, G. Hydrocarbons and monoesters of propolis waxes. Apidologie 1998, 29, 305–314.
79. Cvek, J.; Medid-Saric, M.; Vitali, D.; Vedrina-Dragojevik, I.; Smit, Z.; Tomic, S. The content
of essential and toxic elements in Croatian propolis samples and their tinctures. J. Apicult. Res.
Dostları ilə paylaş: |