2014, 19, 19610-19632; doi: 10. 3390/molecules191219610 molecules


Table 2. Terpenes identified in propolis since 2000.  No



Yüklə 221,37 Kb.
Pdf görüntüsü
səhifə2/4
tarix18.04.2017
ölçüsü221,37 Kb.
#14612
1   2   3   4

Table 2. Terpenes identified in propolis since 2000. 

No. 

Chemical Name 

Geographical Location  Reference

Monoterpenes 

112 

trans-β-Terpineol Greece 

[54] 


113 Linalool 

Brazil 


[52] 

114 Camphor 

Iran 

[55] 


Sesquiterpenes 

115 Junipene 

Greece 

[54] 


116 

γ-Elemene Brazil 

[52] 


Molecules 201419 19618 

 

 

Table 2. Cont.

 

No. 

Chemical Name 

Geographical Location  Reference

Sesquiterpenes 

117 

α-Ylangene Brazil 



[52] 

118 Valencene 

Brazil 

[52] 


119 8-βH-Cedran-8-ol Turkey 

[53] 


120 4-βH,5α-Eremophil-1(10)-ene Turkey 

[53] 


121 

α-Bisabolol Turkey 

[23] 

122 


α-Eudesmol Turkey 

[23] 


123 

α-Cadinol Turkey 

[23] 

124 Patchoulene 



Indonesia 

[56] 


Diterpenes 

125 Manoyl 

oxide 

Greece 


[57] 

126 Ferruginol 

Greece 

[57] 


127 Ferruginolone 

Greece 


[57] 

128 2-Hydroxyferruginol 

Greece 

[57] 


129 6/7-Hydroxyferruginol 

Greece 


[57] 

130 Sempervirol 

Greece 

[57] 


131 Abietic 

acid 


Greece 

[57] 


132 18-Succinyloxyabietadiene 

Greece 


[57] 

133 18-Succinyloxyhydroxyabietatriene 

Greece  [57] 

134 18-Hydroxyabieta-8,11,13-triene 

Greece [57] 

135 Imbricataloic 

acid 

Greece 


[57] 

136 Imbricatoloic 

acid 

Greece 


[57] 

137 Diterpenic 

acid 

Greece 


[57] 

138 Neoabietic 

acid 

Greece 


[57] 

139 Labda-8(17),12,13-triene 

Greece 

[57] 


140 Hydroxydehydroabietic 

acid 


Greece 

[57] 


141 Dihydroxyabieta-8,11,13-triene 

Greece 


[57] 

142 13(14)-Dehydrojunicedric 

acid 

Greece 


[57] 

143 Dehydroabietic 

acid 

Greece 


[57] 

144 18-Hydroxyabieta-8,11,13-triene 

Greece [57] 

145 Junicedric 

acid 

Greece 


[29] 

146 14,15-Dinor-13-oxo-8(17)-labden-19-oic 

acid 

Greece 


[29] 

147 


tran-Communal Greece 

[29] 


148 

Palmitoyl isocupressic acid 

Greece 

[29] 


149 Oleoyl 

isocupressic 

acid 

Greece 


[29] 

150 13-Hydroxy-8(17),14-labdadien-19-oic 

acid 

Greece 


[29] 

151 15-Oxolabda-8(17),13(E)-dien-19-oic acid 

Greece 

[29] 


152 Pimaric 

acid 


Greece 

[29] 


153 Totarolone 

Greece 


[29] 

Triterpenes 

154 Lupeol 

alkanoates 

Brazil 

[58] 


155 Lupeol 

Brazil 


[58] 

156 Lupeol 

acetate 

Cuba 


[59] 

157 Lanosterol 

acetate 

Egypt 


[35] 

Molecules 201419 19619 

 

 

Table 2. Cont.

 

No. 

Chemical Name 

Geographical Location  Reference 

Triterpenes  

158 Lanosterol 

Cuba 


[59] 

159 Germanicol 

acetate 

Cuba 


[59] 

160 Germanicol 

Cuba 

[59] 


161 

β-Amyrin acetate 

Cuba 

[59] 


162 

β-Amyrone Cuba 

[59] 

163 


α-Amyrin acetate 

Cuba 


[59] 

164 


α-Amyrone Cuba 

[59] 


165 24-Methylene-9,19-ciclolanostan-3β-ol Brazil 

[58] 


166 (22Z,24E)-3-Oxocycloart-22,24-dien-26-oic acid 

Burma 


[60] 

167 (24E)-3-Oxo-27,28-dihydroxycycloart-24-en-26-oic acid 

Burma 

[60] 


168 3,4-seco-Cycloart-12-hydroxy-4(28),24-dien-3-oicacid Greece  [29] 

169 Cycloart-3,7-dihydroxy-24-en-28-oic acid 

Greece 

[29] 


170 

3-Oxo-triterpenic acid methyl ester 

Egypt 

[61] 


5. Phenolics 

Brazilian green propolis is rich in phenylpropanoids including cinnamic acid, p-coumaric acid, 

caffeic acid, ferulic acid and their derivatives. Among these substances, prenylated cinnamic acids  

turn out to be a salient chemical feature and have a consanguineous bearing on antimicrobial activity of 

green propolis. In recent years, researchers identified a series of phenylpropanoid derivatives 171180 in 

Brazilian propolis. Meanwhile, some caffeic acid derivatives 182183 and isoferulic acid derivative 184 

were also identified in poplar propolis by GC-MS. Chlorogenic acid is abundant in Brazilian propolis of 

floral origin from Citrus spp. [62]. Three quinic acid derivatives 185187 were identified in this type  

of propolis.   

Another class of phenolics, stilbenes, are not very common in plants. In 2010, Petrova et al. identified 

two geranylstilbenes; schweinfurthin A (188) and schweinfurthin B (189) in propolis produced in 

Kenya. Macaranga schweinfurthii is the only plant source of these two geranylstilbenes to this date [37]. 

In 2012, another stilbene, 5-farnesyl-3'-hydroxyresveratrol (190) was identified in Solomon Island 

propolis, which is also present in Macaranga plants [31]. These results suggest that Macaranga is 

probably the plant source of the propolis from Kenya and Solomon Island. However, many stilbenes 

191202, especially prenylated stilbenes, were identified in Australian Kangaroo Island propolis, which 

makes this type of propolis a stronger scavenging activity towards DPPH free radical than Brazilian 

propolis [63], suggesting the source of stilbenes is not limited to only a few plants. 

Lignans as main chemical compounds in tropical propolis have attracted a worldwide research interest. 

In the past 12 years, researchers identified three lignans 206208 in Kenyan and Brazilian propolis.  

As shown in the Table 3, other phenolic compounds and derivatives were identified in propolis from 

Brazil (209219), Indonesia (220229), France (230), Iran (231239) and Malta (240241). Among these 

chemicals, nemorosone (215) is the exclusive and principal component of Clusia rosea floral resins, 

indicating that Clusia spp. is the plant origin of the brown propolis [64]. Tschimgin (232), tschimganin 

(233), ferutinin (236), tefernin (237) identified in Iranian propolis are the characteristic compositions of 

the Ferula species, which is considered as another plant source of Iranian propolis besides poplar.   


Molecules 201419 19620 

 

 

Table 3. Phenolics identified in propolis since 2000. 



No. Chemical 

Name Geographical 

Location 

Reference 

Phenylpropanoids 

171 

cis-3-Methoxy-4-hydroxycinnamic acid 

Brazil 


[65] 

172 


trans-3-Methoxy-4-hydroxycinnamic acid 

Brazil 


[65] 

173 


3-Prenyl cinnamic acid allyl ester 

Brazil 


[66] 

174 


p-Methoxycinnamic acid 

Brazil 


[66] 

175 Dihydrocinnamic 

acid 

Brazil 


[66] 

176 3-Prenyl-4-hydroxycinnamic 

acid 

Brazil 


[67] 

177 3,5-Diprenyl-4-hydroxycinnamic 

acid 

Brazil [67] 



178 3-Methyl-2-butenyl 

isoferulate 

Brazil 

[66] 


179 3-Methyl-3-butenyl 

caffeate 

Brazil 

[66] 


180 Hexadecyl 

caffeate 

Brazil 

[66] 


181 

Methyl(E)-4-(4'-hydroxy-3'-methylbut- 

(E)-2'-enyloxy) cinnamate 

Australia [63] 

182 

Tetradecenyl caffeate (isomer) 



Egypt 

[35] 


183 Tetradecenyl 

caffeate 

Egypt 

[35] 


184 2-Methyl-2-butenyl 

ferulate 

Uruguay 

[68] 


Chlorogenic acids 

185 


4-Feruoyl quinic acid 

Brazil 


[62] 

186 


5-Ferruoyl quinic acid 

Brazil 


[33] 

187 3,4,5-tri-O-Caffeoylquinic acid 

Brazil 

[69] 


Stilbenes 

188 Schweinfurthin 

Kenya 


[37] 

189 Schweinfurthin 

Kenya 


[37] 

190 5'-Farnesyl-3'-hydroxyresveratrol 

Solomon 

Island 


[31] 

191 5,4'-Dihydroxy-3'-methoxy-3-prenyloxy-E-stilbene. Australia 

[63] 

192 3,5,3',4'-Tetrahydroxy-2-prenyl-E-stilbene Australia 



[63] 

193 3,5,4'-Trihydroxy-3'-methoxy-2-prenyl-E-stilbene Australia 

[63] 

194 5,3',4'-Trihydroxy-3-methoxy-2-prenyl-E-stilbene Australia 



[63] 

195 5,4'-Dihydroxy-3,3'-dimethoxy-2-prenyl-E-stilbene Australia 

[63] 

196 5,4'-Dihydroxy-3-prenyloxy-E-stilbene Australia 



[63] 

197 3',4'-Dihydroxy-E-stilbene Australia 

[63] 

198 3',4'-Dihydroxy-3,5-dimethoxy-E-stilbene Australia 



[63] 

199 Diprenylated 

dihydrostilbene 

Australia 

[63] 

200 3,5-Dihydroxy-2-prenyl-E-stilbene Australia 



[63] 

201 4-Prenyldihydroresveratrol 

Australia 

[63] 


202 3-Prenylresveratrol 

Australia 

[63] 

203 


(+)-Pinoresinol dimethyl ether 

Brazil 


[44] 

204 (+)-Pinoresinol 

Brazil 

[44] 


205 (+)-Syringaresinol 

Brazil 


[44] 

Lignans 


206 Tetrahydrojusticidin 

Kenya 



[37] 

207 6-Methoxydiphyllin 

Kenya 

 

[37] 



208 

Phyllam ricin C 

Kenya 

[37] 


Molecules 201419 19621 

 

 

Table 3. Cont. 



No. Chemical 

Name Geographical 

Location 

Reference 

Other phenolics 

209 8-(Methyl-butanechromane)-6-propenoic 

acid 


Brazil 

[70] 


210 3-Hydroxy-2,2-dimethyl-8-prenylchromane-6-propenoic acid 

Brazil 


[70] 

211 2,2-Dimethyl-8-prenylchromene-6-propenoic 

acid 

Brazil 


[70] 

212 2,2-Dimethylchromene-6-propenoic 

acid 

Brazil  [70] 



213 2,2-Dimethyl-6-carboxyethnyl-2H-1-benzopyran Brazil 

[70] 


214 2,2-Dimethyl-6-carboxyethenyl-8-prenyl-2H-1-benzopyran Brazil  [70] 

215 Nemorosone 

Brazil 

[9] 


216 7-epi-clusianone 

Brazil 


[9] 

217 Xanthochymol 

Brazil 

[9] 


218 Gambogenone 

Brazil 


[9] 

219 Hyperibone 

Brazil 


[71] 

220 5-Pentadecylresorcinol 

Indonesia 

[72] 


221 5-(8'Z,11'Z-Heptadecadienyl)-resorcinol Indonesia 

[72] 


222 5-(11'Z-Heptadecenyl)-resorcinol Indonesia 

[72] 


223 5-Heptadecylresorcinol 

Indonesia 

[72] 

224 1,3-Bis(trimethylsilylloxy)-5,5-proylbenzene 



Indonesia  [56] 

225 3,4-Dimethylthioquinoline 

Indonesia 

[56] 


226 4-Oxo-2-thioxo-3-thiazolidinepropionic 

acid 


Indonesia  [56] 

227 


D

-glucofuranuronic acid 

Indonesia 

[56] 


228 Dofuranuronic 

acid 


Indonesia 

[56] 


229 3-Quinolinecarboxamine 

Indonesia 

[56] 

230 Baccharin 



France 

[73] 


231 Suberosin 

Iran 


[55] 

232 Tschimgin 

Iran 

[55] 


233 Tschimganin 

Iran 


[55] 

234 Bornyl 



p-hydroxybenzoate Iran 

[55] 


235 Bornyl 

vanillate 

Iran 

[55] 


236 Ferutinin 

Iran 


[55] 

237 Tefernin 

Iran 

[55] 


238 Ferutinol 

p-hydroxybenzoate Iran 

[55] 


239 Ferutinol 

vanillate 

Iran 

[55] 


240 2-Acetoxy-6-p-methoxybenzoyl jaeschkeanadiol 

Malta 


[74] 

241 2-Acetoxy-6-p-hydroxybenzoyl jaeschkeanadiol 

Malta 

[74] 


6. Sugars 

The question about the origin of sugars in propolis has not been solved yet. Nectar and honey are 

thought to be the sources of glucose, fructose and sucrose. Others suggest that they come from 

hydrolyzed flavonoid glycosides in propolis. In addition, mucilages containing numerous sugars, sugar 

alcohols and acids were listed among potential propolis sugar sources by Crane [75]. In the propolis 

originated from the Canary Islands and Malta, many sugars, sugar alcohols and uronic acids were 

identified, supporting the claim that plant mucilages were the source of these compounds [74]. In 

Egyptian propolis, many sugars, sugar alcohols and uronic acids were identified by GC-MS. Among 



Molecules 201419 19622 

 

 

these substances, galactitol, gluconic acid, galacturonic acid and 2-O-glycerylgalactose were identified 



in propolis for the first time [61].   

7. Hydrocarbons 

Hydrocarbons are other basic components of propolis. In recent years, alkanes, alkenes, alkadienes, 

monoesters, diesters, aromatic esters, fatty acids and steroids have been identified in many types of 

propolis such as Egyptian propolis [35], Brazilian propolis [65] and Anatolian propolis [76]. Comparing 

the compositions of Brazilian propolis waxes and comb waxes which were produced by the same 

colony, no difference was found to allow a distinction, suggesting a common origin for both wax  

sources [77]. This result not only illustrates that propolis waxes are secreted by bees [78], but also 

indicates that the composition of propolis waxes and comb waxes is only dependent on genetic factors of 

the bees, not plant sources. 

8. Mineral Elements 

Trace elements (Ca, K, Mg, Na, Al, B, Ba, Cr, Fe, Mn, Ni, Sr and Zn) and toxic elements (As, Cd, Hg 

and Pb) were discovered by atomic emission/absorption spectrometry in propolis samples collected 

from different Croatian regions [79]. Br, Co, Cr, Fe, Rb, Sb, Sm and Zn were identified in different 

Argentinean propolis by neutron activation analysis. These studies show that the trace element profiles 

can be useful for propolis identification according to their location [80]. 



9. The Chemical Categories Reported in Propolis 

The chemical categories reported in propolis during 2000 and 2012 are summarized in Figure 3 and 

Table 4, indicating consistency with the categories reported previously (Figure 1). It is well recognized 

that the chemical composition of herbal medicines are affected by many environmental factors while 

maintaining their genetic characteristics [81]. Similar effects to propolis can be expected from 

environmental factors. However, bee species needs to be considered together with geographical factors 

and plant sources. 

Table 4. The chemical categories reported in propolis since 2000. 

Chemical 

Category 

Example 

Compound 

Geographical Origin 

Plant Source 

Bee Species 

References 

Flavonoids Luteolin 

Australia, Brazil, Burma, 

Canada, Chinese, Cuba, Egypt, 

Greece, Japan, Kenya, Mexico, 

Nepal, Poland, Portugal, 

Solomon Island, Taiwan 

Populus, 

Macaranga, 

Dalbergia 

Apis 

mellifera 

[26,31,34,36–39, 

41–47,61] 

Prenylated 

flavanones 

7-O-prenylpino- 

cembrin 

Greece, Japan 

 

Apis 

mellifera 

[39,42] 


Neo-flavonoids Cearoin 

Nepal 


Dalbergia 

Apis 

mellifera 

[50] 


Molecules 201419 19623 

 

 

Table 4. Cont



Chemical 

Category 

Example 

Compound 

Geographical Origin 

Plant Source 

Bee Species 

References 

Monoterpenes 

Sesquiterpenes 

Diterpenes 

Linalool abietic acid 

Brazil, Greece, Indonesia,   

Iran, Malta, Turkey 

Ferula 

Pinaceae 

Cupressaceae 

Apis 

mellifera 

[37,52,53,55,56,74] 

Triterpenes Lupeol 

acetate 


Burma, Brazil, Cuba, Egypt, 

Greece 


 

Apis 

mellifera 

[29,35,58–60] 

Phenylpropanoid

s and esters 



p-Methoxycinnamic 

acid 


Australia, Brazil, Egypt, 

Uruguay 


Citrus 

Apis 

mellifera 

[61,63,66,68] 

Prenylated 

phenylpropanoids 

3-Prenyl-4- 

hydroxycinnamic 

acid 

Brazilian Green propolis 



Baccharies 

Africanized 



Apis 

mellifera 

[67] 


Stilbenes and 

prenylated 

stilbenes 

3-Prenylresveratrol 

Australia, Brazil, Greece, 

Indonesia, Kenya 



Macaranga 

Apis 

mellifera 

[31,37,44,63,72] 

Lignans 6-Methoxydiphyllin 

Kenya 


 

Apis 

mellifera 

[37] 


Coumarins 

Prenylated 

coumarin suberosin 

Iran  


Apis 

mellifera 

[55] 


Figure 3. Representative chemical components identified in propolis since 2000. 

 


Molecules 201419 19624 

 

 

10. Bee Species and Propolis 

We propose that species, subspecies and varieties of bees have a major impact on the chemical 

components and quality of propolis. The genus Apis  contains 10 generally recognized species. 

Honeybee,  A. mellifera, is widely spread in Europe, Ural Mountains, Africa, and Asia. All other 

recognised  Apis species are of Asian distribution. About 25 subspecies have been recognized for  



A. mellifera, based on morphometry, behaviour and biogeography [82], belonging to three or four major 

subspecies groups [83].   

The most popular species of honeybee is the European honeybee, Apies mellifera. It has been  

shown that varieties of bee affect the antibacterial activity of propolis collected from the same apiary;  



A. mellifera carnica hives showed weaker antibacterial activity than that of A. mellifera anatolica and  

A. mellifera caucasica. The three honeybee races used neither the same nor the single plant source [23]. 

In another type of propolis, geopropolis, produced by stingless bee species, Melipona scutellaris

benzophenones, but no flavonoids, have been identified as the major compounds [84]; However, 

geopropolis produced by Melipona fasciculate contains high concentrations of polyphenols, flavonoids, 

triterpenoids, saponins, and even tannins [85].   

Although different species of honeybee prefer different plants, the chemical profile of propolis that is 

produced by the same species is not always same. Brazilian green and red propolis both originate  

from Africanized A. mellifera [65,86], but these propolis are rich in prenylated phenylpropanoids and 

isoflavonoids respectively. The differences are due to the plants, namely B. dracunculifolia and 

Dalbergia ecastophyllum, which are used by bees as resin sourcesIn cerumen propolis from stingless 

bees (Tetragonula carbonaria),  C-methylated flavanones, terpenic acids and phenolic acids, such as 

gallic acid, diterpenic acids of pimaric and abietic type are the predominant chemicals, but it lacks  

the characteristic flavonoids and prenylated phenolics found in propolis from honeybees species in 

Australia [87,88]. Therefore, the variant chemical composition of propolis depends on the bees’ preferences 

of botanical sources and the species and varieties of bees [89–91].   



11. The Geographical Origins of Propolis 

Propolis collected from many countries have demonstrated chemical profiles similar to the poplar type 

propolis: China [92], Korea, Croatia [93], different regions of Taiwan [43,94,95], New Zealand [96] and 

Africa [35]. Poplar tree (Populus nigra L. and P. alba L) is common in Europe, and is used to name the 

common type of propolis that is rich in flavonoids and phenylpropanoids. However, flavonoids are not 

restricted to poplar; furthermore, in areas where poplars are not native plants, such as Australia and 

equatorial regions of South America, bees will seek other plants to produce propolis, which contain the 

flavonoids of the poplar type propolis [36]. 

Propolis from the tropical zone, Brazilian green and red propolis, are respectively rich in prenylated 

derivatives of p-coumaric acid, and some isoflavonoids that are different from the ones found in poplar 

type propolis [3,97]. In addition, propolis from Solomon Island, Burma, Greek, Japan are characterized 

by the geranylated and prenylated flavonoids (Table 1). 



Molecules 201419 19625 

Yüklə 221,37 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin