Кружков С.Н. Нелинейные параболические уравнения с двумя независимыми переменными Тр. ММО. 1967. 16, No. С.329-346.
Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа.М.: Наука, 1967. 736 с.
Фридман А. Уравнения с частными производными параболического типа. M.: Мир, 1968. 428 с.
Aronson D.G., Weinberger H.F. Nonlinear diffusion in population genetics, combustion and nerve pulse propogation // Partial Differential Equations and Related Topics. Lecture Notes in Mathematics 1975. 446. C.5-49.
Asrakulova D.S., Elmurodov A.N. A reaction-diffusion-advection competition model with a free boundary // Uzb. Math. J. 2021.3.
Cantrell R.S, Cosner C. Spatial ecology via reaction-diffusion equations.England: Wiley, 2003.P. 428.
Ciliberto C. Formule di maggiorazione e teoremi di esistenza per le soluzioni delle equazioni paraboliche in due variabili // Ricerche di Matem.1954. 82. C.40-75.
Du Y., Lin Z.G. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary // SIAM J.Math.Anal.2010.4.C.377-405
Du Y., Lin Z.G. The diffusive competition model with a free boundary: invasion of a superior or inferior competitor // Discrete Contin. Dyn. Syst. Ser. B.2014.19.C.3105-3132.
Gu H, Lin Z. G and Lou B. D. Long time behavior for solutions of Fisher-KPP equation with advection and free boundaries // J. Funct. Anal.2015.269.C.1714-1768.
Guo J.S., Wu C.H. On a free boundary problem for a two-species weak competition system // J Dyn Diff Equat. 2012.24.C.873-895.
Guo J.S., Wu C.H. Dynamics for a two-species competition-diffusion model with two free boundaries // Nonlinearity.2015.28. C.1-27.
Lockwood M.F, Hoopes M. F., Marchetti M. P. Invasion Ecology.Oxford: Blackwell Publishing, 2013. P. 444.
Pao C.V. Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press.1992. P. 777.
Ren X., Liu L. A weak competition system with advection and free boundaries // J.Math.Anal.Appl.2018.463. C.1006-1039.
Shigesada N., Kawasaki K. Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution Oxford: Oxford University Press.1997. P. 224.
Takhirov J.O. A free boundary problem for a reaction-diffusion equation in biology // Indian J. Pure Appl. Math.2019.50.C.95-112.
Takhirov J.O., Rasulov M.S. Problem with free boundary for systems of equations of reaction-diffusion type // Ukr. Math. J.2018.69.C.1968-1980.
Wang R., Wang L., Wang Zh. Free boundary problem of a reaction-diffusion equation with nonlinear convection term // J. Math.Anal.Appl.2018. 467.C.1233-1257.
Wang M., Zhao J. Free Boundary Problems for a Lotka-Volterra Competition System // Jour. Dyn.Differ. Equ. 2014.26.C.1-21.
Wang M., Zhang Y. Two kinds of free boundary problems for the diffusive prey-predator model // Nonlinear Anal. Real World Appl. 2015.24.C.73-82.
Wu C.H. The minimal habitat size for spreading in a weak competition system with two free boundaries // J.Differential Equation.2015.259.C.873-897.