A quasilinear parabolic equation of the reaction-diffusion type with free boundary, M. S. Rasulov 1, and A. K. Norov 1


Theorem 5. Suppose that the conditions of Theorem 2.1 are satisfied. Then there exists a solution , of problem (3)-(7). Proof



Yüklə 376,31 Kb.
səhifə5/6
tarix28.04.2023
ölçüsü376,31 Kb.
#104151
1   2   3   4   5   6
IRRIGATSIYA (2)

Theorem 5. Suppose that the conditions of Theorem 2.1 are satisfied. Then there exists a solution , of problem (3)-(7).
Proof. To prove the solvability of the nonlinear problem, we can use different theorems from the theory of nonlinear equations taking into account the fact that the theorem on uniqueness of the classical solution is true for this problem. We use the Leray-Schauder principle [21], the established a priori estimates for all possible solutions of nonlinear problems, and the theorems on solvability in Hölder classes for the linear problems. Moreover, the theorems on existence for systems are the same as the theorem on existence for a single equation because each equation can be regarded as a linear equation for with Hölder -continuous coefficients.
Problem (3)-(7) is considered simultaneously with a one-parameter family of problems of the same type. The linear problem specifies the transformation , and the Leray-Schauder principle is applied to this transformation. This operator is nonlinear and depends on . The fixed points of this operator for are solutions of the problem.
By , , we denote a Banach space of functions on with the norm , which satisfy the corresponding initial and boundary conditions of the problem (13)-(15).
For every function and any number , by , we denote the solutions of the linear problem (13)-(15). These solutions exist and are unique; moreover, , . In this case, in , we perform the transition to the parabolic equation with Hölder-continuous coefficients in a fixed domain.
The uniform continuity and complete continuity of the operator of transformation with respect to , estimates for the solutions uniform in , and the solvability of the linear problems follow from the established a priori estimates for the Hölder norms. A more detailed exposition of the technique can be found, for example, in (Chap.VII [20]; Chap.VI, [21]). This completes the proof of the theorem.
REFERENCES

  1. REVTEX Home Page. https://journals.aps.org/revtex. Accessed 2018.

  2. REVTEX 4.1 Author's Guide, American Physical Society, Research Road, Ridge, NY 11961 (2010). https://d22izw7byeupn1.cloudfront.net/files/revtex/auguide4-1.pdf. Accessed 2018.

  3. D.E. Knuth, The TeXbook (Addison-Wesley, London, 1984).

  4. S.M. L'vovskij, Nabor i verstka v pakete LaTeX, 2-e izdanie (Kosmosinform, Moscow, 1995) [in Russian].

  5. G.Grjetcer, Pervye shagi v LaTeX'e (Mir, Moscow, 2000) [in Russian].

  6. H.Kopka and P.Daly, A Guide to LaTeXe (Addison-Wesley, Reading, MA, 1995).

  7. House Style Guide: Version 2.0. http://ojs.kpfu.ru/files/HSG2013.pdf. Accessed 2018.

  8. J. Frost, Capitalization in Titles 101. https://www.grammarcheck.net/capitalization-in-titles-101. Accessed 2018.

  9. R.Fisher, “The wave of advance of advantageous genes,” Annals of Eugenics, 1937, 16, Vol. 7, Issue 4, pp. 355–-369 (1937)

  10. Колмогоров А. Н., Петровский И. Г., Пискунов Н. С. Исследование уравнения диффузии, соединенной с возрастанием вещества, и его применение к одной биологической проблеме // Бюллетень МГУ. Сер. А. Математика и Механика, 1937, 1:6, С. 1-26.

  11. Cantrell R.S, Cosner C. Spatial ecology via reaction-diffusion equations. England: Wiley, 2003.

  12. Ciliberto C.Formule di maggiorazione e teoremi di esistenza per le soluzioni delle equazioni paraboliche in due variabili, Ricerche di Matem. 1954. 82, 40--75.

  13. Friedman A. Partial Differential Equations of Parabolic Type. Prientece Hall, 1964.

  14. Ladyzenskaja O.A., Solonnikov V.,A., Ural'ceva N.,N. Linear and quasilinear equations of parabolic type. Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1968.

  15. Lockwood M.F, Hoopes M. F., Marchetti M. P. Invasion Ecology. Oxford: Blackwell Publishing, 2013.

  16. Pao C.V. Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press. 1992.

  17. S.N.Kruzhkov, “Nonlinear parabolic equations in two independent variables,” Trans. Moscow Math. Soc 16, 355--373 (1967).

  18. C. Ciliberto, “Formule di maggiorazione e teoremi di esistenza per le soluzioni delle equazioni paraboliche in due variabili,” Ricerche di Matem. (1954).

  19. J.O.Takhirov, M.S. Rasulov, “Problem with free boundary for systems of equations of reaction-diffusion type,” Ukr. Math. J. 69, 1968--1980 (2018).

  20. J.O.Takhirov, “A free boundary problem for a reaction-diffusion equation in biology,” Indian J. Pure Appl. Math. 50, 95--112 (2019).

  21. A.Friedman,
    Yüklə 376,31 Kb.

    Dostları ilə paylaş:
1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin