Amaliyotda ko'p uchraydigan muhim diskret va uzluksiz taqsimotlar va normal taqsimotning tadbiqlari



Yüklə 257,5 Kb.
səhifə2/4
tarix11.04.2023
ölçüsü257,5 Kb.
#96027
1   2   3   4
AMALIYOTDA KO\'P UCHRAYDIGAN MUHIM DISKRET VA UZLUKSIZ TAQSIMOTLAR VA NORMAL TAQSIMOTNING TADBIQLARI.

Teorema: Har qanday taqsimot fuksiya yagona usul bilan ko`rinishda tasvirlanishi mumkin, bu yerda diskret taqsimot funksiya absalyut uzluksiz taqsimot funksiya, singulyar taqsimot funksiya.
Endi ba`zi muhim absolyut uzluksiz taqsimotlarni qarab chiqamiz.
Tekis taqsimot. Agar tasodifiy miqdor zichlik funksiyasi

ko`rinishida bo`lsa, tasodifiy miqdor kesmada tekis taqsimotga ega deyiladi.
Normal taqsimot. Agar tasodifiy miqdorning zichlik funksiyasi

ko`rinishda bo`lsa, u normal taqsimotga ega deyiladi.
Haqiqatdan ham p(x) zichlik funksiyadir, chunki .
Bunga almashtirish va matematik analiz kursidagi Puasson integrali orqali ishonch hosil qilish mumkin .

normal taqsimot zichlik funksiyasi grafigi chiziqga nisbatan simmetrik bo`ladi va ning turli qiymatlarida quyidagicha bo`ladi. normal taqsimotga ega bo`lgan tasodifiy miqdor bo`lsin, bu holda standart normal taqsimotga ega deyiladi. U holda ning taqsimot funksiyasi

zichlik funksiyasi esa

ko`rinishida bo`ladi. .
Ko`rsatkichli taqsimot. tasodifiy miqdor parametr bilan ko`rsatkichli (eksponensial) taqsimotga ega deyiladi, agar uning taqsimot funksiyasi quyiadgi ko`rinishda bo`lsa,
.
Biz bundan keyin tasodifiy miqdor parametrli normal taqsimotga ega bo`lsa, ko`rinishda yozamiz.
Bunday tasodifiy miqdorning zichlik taqsimoti

ko`rinishda bo`ladi.
Agar tasodifiy miqdorning zichlik taqsimoti bo`lsa, u Koshi qonuni bilan taqsimlangan deyiladi.
Endi normal taqsimot orqali aniqlanadigan ayrim taqsimotlarni qaraymiz.
-taqsimot. va bog`lanmagan tasodifiy miqdorlar bo`lsinlar ( ). tasoifiy miqdorlarni aniqlaymiz. tasodifiy miqdorning taqsimotiga erkinlik (ozodlik) darajali taqsimoti deyladi.
erkinlik darajali taqsimotning zichlik funksiya uchun ko`rinishiga ega, bu yerda ko`paytuvchi shartni qanoatlantiradi.
Styudent taqsimoti. , va lar bog`lanmagan tasodifiy miqdorlar. U holda

tasodifiy miqdor erkinlik darajali Styudent taqsimotga ega deyiladi.
Styudent taqsimotining zichlik funksiyasi

ko`rinishda bo`ladi.
Fisher taqsimoti ( -taqsimot). -bog`lanmagan normal tasodifiy miqdorlar bo`lsinlar: , . U holda

tasodifiy miqdor va erkinlik darajali Fisher taqsimotiga ega bo`ladi.

Yüklə 257,5 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin