Aniq integralning tatbiqlari Reja



Yüklə 1,46 Mb.
tarix16.12.2023
ölçüsü1,46 Mb.
#181784
Aniq integralning tatbiqlari Reja-fayllar.org


Aniq integralning tatbiqlari Reja

Aniq integralning tatbiqlari

Reja:
1. Aniq integralning fizik va mexanik tatbiqlari.
2. Aniq integral yordamida yassi figuralar yuzlarini hisoblash.
3. Egri chiziq yoyi uzunligini hisoblash.
4. Aylanma jism hajmini hisoblash.
5. Aniq integralning iqtisodiyotga tatbiqlari.
6. Xulosa.
1.Kattaligi o’zgaruvchan va funksiya bilan aniqlanadigan kuch moddiy nuqtani kesma bo’yicha harakatlantirganda bajarilgan ish



formula bilan hisoblanadi.
Biror o’zgarmas tezlik bilan to’gri chiziq bo’ylab tekis harakat qilayotgan moddiy nuqtaning vaqt oralig’ida bosib o’tgan masofasi formula bilan hisoblanadi.
Tezligi har bir vaqtda o’zgaruvchan va funksiya bilan aniqlanadigan notekis harakatda moddiy nuqtaning vaqt oralig’ida bosib o’tgan masofasi



formula bilan aniqlanadi.

Ma’lumki, inersiya momenti tushunchasi mexanikaning muhim tushunchalaridan biri hisoblanadi. Tekislikda massaga ega bo’lgan moddiy nuqta berilgan bo’lib, bu nuqtadan biror o’qqacha ( yoki nuqtagacha) bo’lgan masofa ga teng bo’lsin. U holda miqdor moddiy nuqtaning o’qga ( nuqtaga) nisbatan inersiya momenti deb ataladi.


Masalan, tekislikdagi massaga ega bo’lgan moddiy nuqtaning koordinata o’qlariga hamda koordinata boshiga nisbatan inersiya momentlari mos ravishda



formulalar orqali hisoblanadi.

Masalan, tekislikda har biri mos ravishda massaga ega bo’lgan , , …, moddiy nuqtalar sistemasining koordinata o’qlariga hamda koordinata boshiga nisbatan inersiya momentlari mos ravishda




formulalar orqali ifodalanadi.

Biror egri chiziq yoyi bo’yicha massa tarqatilgan bo’lsin. Bu massali egri chiziq yoyining koordinata o’qlari hamda koordinata boshiga nisbatan inersiya momentlari






formulalar orqali ifodalanadi.


tekislikda massalari bo’lgan material nuqtalar sistemasi berilgan bo’lsa, u holda, va ko’paytmalar massaning va o’qlariga nisbatan statik momentlari deyiladi.
Berilgan sistemaning og’irlik markazi koordinatalarini va lar bilan belgilaymiz. U holda, mexanika kursidan ma’lum bo’lgan





formulalarni yozishimiz mumkin.


tenglama bilan berilgan egri chiziq yoyining og’irlik markazi koordinatalari quyidagi integrallar bilan aniqlanadi :





chiziqlar bilan chegaralangan tekis figura og’irlik markazining koordinatalari


formulalardan topiladi.

2.



3.







4.








5.















6. Xulosa qilib shuni aytishimiz mumkinki aniq integral hayotimizning deyarli
barcha jabhalarini qamrab olgan. Jumladan texnikada juda keng qo’llaniladi.
Shuningdek iqtisodiy masalalarni yechishda ham keng foydalaniladi. Aniq

Integral yordamida fizik masalalar ham juda oson hal etiladi.


http://fayllar.org
Yüklə 1,46 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin