Another Bias Correction Method John Ashburner


P(yi|k,k,k) = (2k2)-1/2 exp(-(yi-k)2/(2k2))



Yüklə 0,75 Mb.
səhifə3/6
tarix28.12.2021
ölçüsü0,75 Mb.
#17120
1   2   3   4   5   6

P(yi|k,k,k) = (2k2)-1/2 exp(-(yi-k)2/(2k2))

  • To incorporate bias correction, extra parameters are used to model smooth intensity variations. A field modelling the variation at element i is denoted i(), where is a vector of unknown parameters. Intensities from the ith cluster are assumed normally distributed, with mean k/i() and variance (k/i())2:

  • P(yi|k,k,k,)

    • = (2(k /i())2)-1/2 exp {-(yi-k /i())2/(2(k/i())2)}
    • =i() (2k2)-1/2 exp {-(yi-k /i())2/(2k2)}


    Mixture of Gaussians Based Derivation - II

    • Probability of a voxel, irrespective of intensity, belonging to kth Gaussian, given the proportion of voxels belonging to that Gaussian is P(k|k)=k .

    • Therefore, the joint probability of cluster k and intensity yi is:

    • P(yi,k|k,k,k,) = P(yi|k,k,k,) P(k|k)


    • Yüklə 0,75 Mb.

      Dostları ilə paylaş:
    1   2   3   4   5   6




    Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
    rəhbərliyinə müraciət

    gir | qeydiyyatdan keç
        Ana səhifə


    yükləyin