Arifmetikaning asosiy teoremasi 1dan kattaroq har qanday tabiiy sonni tub sonlarning ko'paytmasi sifatida ajratish mumkin - ba'zilari takrorlanishi mumkin - va bu shakl bu son uchun noyobdir, ammo omillarning tartibi boshqacha bo'lishi mumkin.
Asosiy son ekanligini unutmang p Bu faqat o'zini va 1ni musbat bo'luvchilar sifatida qabul qiladi, quyidagi sonlar tub sonlar: 2, 3, 5, 7, 11, 13 va boshqalar, chunki cheksizliklar mavjud. 1 raqami asosiy son deb hisoblanmaydi, chunki uning bitta bo'luvchisi bor.
O'z navbatida, yuqorida aytib o'tilganlarga mos kelmaydigan raqamlar chaqiriladi tuzilgan raqamlar, 4, 6, 8, 9, 10, 12, 14 kabi ... Masalan, 10 raqamini olaylik va darhol uning 2 va 5 ko'paytmasi sifatida ajralib chiqishi mumkinligini ko'ramiz:
10 = 2 × 5
Ikkala va 5-chi ikkalasi ham samarali sonlar. Teorema bu har qanday n soni uchun mumkin ekanligini ta'kidlaydi:
Qaerda p1, p2, p3... pr tub sonlar va k1, k2, k3, ... kr ular natural sonlar. Shunday qilib, oddiy sonlar ko'paytirish orqali tabiiy sonlar quriladigan qurilish bloklari vazifasini bajaradi.
Arifmetikaning asosiy teoremasining isboti
Biz har bir sonni asosiy omillarga ajratish mumkinligini ko'rsatib boshlaymiz. N> 1 natural son bo'lsin, oddiy yoki kompozitsion.
Masalan, n = 2 bo'lsa, uni quyidagicha ifodalash mumkin: 2 = 1 × 2, bu asosiy hisoblanadi. Xuddi shu tarzda, quyidagi raqamlarga o'ting:
3 = 1 × 3
4 = 2 × 2
5 = 1 × 5
6 = 2 × 3
7 = 1 × 7
8 = 2 × 2 × 2
Biz shunday davom etamiz, n -1 raqamiga yetguncha barcha natural sonlarni parchalaymiz. Keling, buni quyidagi raqam bilan bajarishimiz mumkinligini ko'rib chiqamiz: n.
Agar $ n $ asosiy bo'lsa, biz uni $ n = 1 marta n $ deb ajratishimiz mumkin, ammo $ n $ kompozit va $ d $ bo'luvchiga ega, mantiqan $ n $ dan kam:
1 Agar n / d = p bo'lsa1, P bilan1 asosiy son, keyin n quyidagicha yoziladi:
n = p1.d
Agar $ d $ asosiy bo'lsa, endi buni qilish kerak emas, lekin u $ n $ mavjud2 d ning bo'luvchisi va undan kichik: n2 2 boshqa bir asosiy son p bilan2:
d = p2 n2
Buning o'rniga asl raqamni almashtirishda n:
n = p1 .p2 .n2
Endi $ n $ deb taxmin qiling2na - bu tub son va biz uni p ning oddiy sonining ko'paytmasi sifatida yozamiz3, uning n ning bo'luvchisi tomonidan3, shunday qilib n3 2 1 n2 = p3.n3 → n = p1 p2 p3.n3
Biz ushbu protsedurani qo'lga kiritgunimizcha sonli marta takrorlaymiz:
n = p1.p2.p3 ... pr
Bu parchalanish mumkinligini anglatadi hamma tub sonlar ko'paytmasi sifatida 2 dan n gacha bo'lgan butun sonlar.
Dostları ilə paylaş: |