He-ne lazerlar ishlash prinsipi


Lazerlar haqida umumiy ma’lumot



Yüklə 209,5 Kb.
səhifə3/5
tarix06.02.2023
ölçüsü209,5 Kb.
#83068
1   2   3   4   5
HE-NE lazerlar ishlash prinsipi

2. Lazerlar haqida umumiy ma’lumot
Spektrning optik qismida ishlatiladigan yorug’lik manbalarining nurlanishi kogerent bo’lmaydi, masalan, manbaning butun nurlanishi uning atomlari, molekulalari, ionlari, erkin elektronlari kabi mikroskopik elementlari chiqarayotgan va o’zaro kogerent bo’lmagan oqimlardan tashkil topgan bo’ladi. Gaz razryadining yorug’lanishi, su‘niy va tabiiy manbalarning issiqlik nurlanishi, turli usulda uyg’otilgan lyuminessensiya kogerent bo’lmagan nurlanishga misol bo’la oladi.
XX asrning 60 yillari boshida boshqa tipdagi yorug’lik manbalari yaratilgan bo’lib, ular optik kvant generatorlari (OKG) yoki lazerlar deb ataladi. Kogerent bo’lmagan manbalardagiga qarama-qarshi ravishda kvant generatorning bir-biridan mikroskopik masofalarda bo’lgan qismlaridan chiqayotgan elektromagnitik to’lqinlar o’zaro kogerent bo’ladi. Bu jihatdan kvant generatorlari kogerent radio to’lqinlari manbalariga o’xshash bo’ladi.
Nurlanishning kogerentligi optik kvant generatorlarining qariyib hamma xususiyatlarida ko’rinadi. Nurlanishning to’la energiyasi bundan istisno bo’ladi, chunki bu energiya kogerent bo’lmagan manbalardagi kabi dastavval uzatilayotgan energiyaga bog’liq bo’ladi. Lazerlarning nurlanishi kogerentligi bilan bog’langan ajoyib xususiyati shundan iboratki, energiya vaqt davomida, spektrda, fazoda tarqalish yo‗nalishlari bo’yicha konsentratsiyalanadi. Ba‘zi kvant generatorlarining nurlanishi yuqori darajada monoxromatik bo’ladi. Boshqa lazerlar davom etish vaqti 10-12 s ga teng bo’lgan juda qisqa impulslar chiqaradi; shuning uchun bunday nurlanishning oniy quvvati juda katta bo’lishi mumkin.
Lazerlarning yaratilishi insoniyat ilmiy-texnik taraqqiyotining o’lkan yutuqlaridan biri desa bo’ladi. Lazerlar yaratilishining boshlanishi 1916 yilga borib taqaladi. Usha yili buyuk fizik olim A.Eynshteyn birinchi bo’lib, majburiy nurlanish tushunchasini kiritdi, va nazariy yo’l bilan majburiy nurlanish uni majburlovchi nurlanishga kogerentligini (mosligini) ko’rsatadi. 1930 yilda P.Dirak o’zi tomonidan yaratilgan nurlanishning kvantomexanik nazariyasi asosida majburiy nurlanish va uning kogerentlik xususiyatlarini chuqurroq va aniqroq taxlil qilib, tushuntirib berdi. Lekin bu lazerning yaratilishi uchun yetarli emas edi. 1930 yildan boshlab optik spektroskopiya sohasida ko’plab ilmiy-tadqiqot ishlari boshlanib ketdi. Bu izlanishlar natijasida atomlar, molekulalar, ionlarning energetik sathlari haqida ko’plab ma‘lumotlar olindi va keyinchalik turli lazerlarning yaratilishida ishlatildi. Bu ishlarga S.E.Frish va V.A.Fabrikant kabi Rossiya olimlari ham o’z hissalarini qo’shishdi.
1939 yilda V.A.Fabrikant birinchi bo’lib, yorug’lik nurining majburiy nurlanish xisobiga kuchayishining imkoniyati borligini aytdi. 1951 yilning yozida, u o’zining xodimlari bilan majburiy nurlanish yordamida elektromagnit nurlanishni (ultrabinafsha, ko’rinuvchi, infraqizil va radioto’lqinlar sohasida) kuchaytirish uslubi uchun avtorlik guvoxnomasini olishga taklif berishgan. Bu takliflarida lazerlarning faol muhitini yaratishning asosiy g’oyalari bayon etilgan edi. Lekin optik kuchaytirish g’oyalaridan tashqari, uni amalda bajarish va nixoyat kogerent nurlarning xosil qilish uchun o’ziga xos teskari bog’lanishli optik rezonator bo’lishi kerak edi. Usha yillarda fanning optika bo’limida optik soha uchun rezonatorlar o’ylab topilmagan edi.
Kvant elektronikasi yoki lazerlar fizikasining rivojlanishida radiofizikanig bo’limi bo’lgan radiospektroskopiya muhim omil bo’ldi. Uning keskin rivojlanishi 1940 yillardan boshlanib, ilmiy izlanishlar yo’nalishi atom va molekula spektroskopiyasidan tashqari vaqt va chastotaning, ya‘ni o’ta yuqori chastota (O’YUCH) standartlarini yaratilishga bag’ishlangan edi. Bu ilmiy izlanishlar natijasida 1950 yillarning boshlarida bir-birlaridan mustaqil ravishda N.G.Basov, A.M.Proxorov (FIAN, Rossiya) va Ch.Tauns (AQSH, Kolumbiya universiteti) tomonidan majburiy nurlanish g’oyalaridan amalda foydalanib, ammiak molekulasida ishlovchi molekulyar kuchaytirgich va generator (Mazer) yaratildi . Mazer (Maser - microwave amplification by stimulated emission of radiation) - ingliz so’zlaridagi bosh harflardan tashkil topgan va mazmuni mikroto’lqinni majburiy nurlanish hisobiga kuchaytirishdir. Shu ishlari uchun ular 1964 yili Nobel mukofotining sovrindori bo’lishdi.
Kvant elektronikasining rivojlanishi elektromagnit to’lqinning yangi, infraqizil va ko’zga ko’rinuvchi sohalarida kogerent nurlanish olishga yo’naltirildi. Dunyoning ko‗p ilmiy laboatoriyalarida lazerlar yaratish ustida ish boshlab yuborildi. Bu ishlarning rivojlanishida A.M. Proxorovning kvant qurilmalarida ochiq optik rezanotor sifatida Fabri-Pero ( etaloni) interferometrini qo’llash g’oyasi hal qiluvchi omil bo’ldi.
Birinchi gazli lazer (Laserlight amplification by stimulated emission of radiation – ya‘ni yorug’likni majburiy nurlanish hisobiga kuchaytirish demakdir) 1961 yilda neon va geliy aralashmasida yaratildi. Uzluksiz ish holatida infraqizil sohada to’lqin uzunligi 1,15 mkm bo’lgan kogerent nurlanish berdi. 1962 yilda geliy-neon lazerlarida ko’zga ko’rinadigan sohada, 0,63 mkm to’lqin uzunlikli, qizil rangli kogerent nurlanish hosil qilindi. Shundan beri geliy–neon lazeri takominllashib kelinmoqda.
Muhit atomlarining qandaydir ikki holati energiyalarining Em-En ayirmasiga mos bo’lgan chastotali yassi to’lqin shu muhitda tarqalayotgan bo’lsin. Nurlanishning oqimi Buger qonuniga muvofiq o’zgaradi, bunda yutish koeffitsiyenti (1) munosabat bilan aniqlanadi:

bu erda аmn - Eynshteyn koeffitsiyenti, gm, gn - va Nm, Nn lar - m,n holatlarning statistik og’irliklari va balandliklari. (1) dagi Nn/gn va Nm/gm hadlar mos n→m va m→n o’tishlarning ulushlarini ko’rsatib, bu o’tishlarda fotonlar yutiladi va induksiyalangan ravishda chiqariladi.
Muhitning hajm birligida yutilgan quvvatni quyidagicha ifodalash mumkin:
 (2)
bu yerda u( ) va I( ) energiyaning va oqimning spektral zichliklari (1 sm3 dа).
Agar nurlanish tarqalayotgan muhit termodinamik muvozanatda bo’lsa, Bolsman prinsipiga muvofiq  bo’ladi va demak,  bo’ladi. Bu hol nurlanishning yutilishiga mos keladi. Agar biror usul yordamida Nm/gm>Nn/gn bo’ladigan sharoitlarni amalga oshirsak,  koeffitsiyent o’z ishorasini o’zgartirib, manfiy kattalik bo’lib qoladi. Bu holda muhitda tarqalayotgan energiya oqimining zichligi termodinamik muvozanat holidagi kabi kamaymasdan, balki ortib boradi. Boshqacha aytganda, induksiyalangan nurlanish natijasida yorug’lik oqimiga qo’shilgan fotonlarning soni oqimdan teskari (n→m) o’tishlarda atomlarning uygonish uchun olingan fotonlarning sonidan katta bo’ladi.
Atomlar konsentratsiyalarining Nm/gm>Nn/gn tengsizlikka mos bo’lgan munosabati m, n energetik sathlarning invers bandligi deyiladi. Energetik sathlari invers bandlikka ega bo’lgan va o’zida tarqalayotgan nurlanishni kuchaytiradigan muhit aktiv muhit deb ataladi. Gaz razryadda sathlarning invers bandligini ba‘zi ximiyaviy reaksiyalar, optik uyg’otish va hokazolar yordamida hosil qilish mumkin. Majburiy o’tishlar natijasida vujudga kelgan elektromagnitik to’lqinlar bu o’tishlarga sababchi bo’lgan to’lqin bilan kogerent bo’ladi. Xususan, atomlar bilan o’zaro ta‘sirlashuvi maydon yassi monoxromatik to’lqin bo’lsa, u holda majburiy ravishda chiqarilgan fotonlar ham shunday chastota, qutblanish, faza va tarqalish yo’nalishiga ega bo’lgan yassi monoxromatik to’lqinni tashkil qiladi. Majburiy chiqarish (yutish kabi) natijasida faqat tushayotgan to’lqinning amplitudasi o’zgaradi.
Yuqorida aytilganlarni majburiy chiqarish nurlanishni uning boshqa xarakteristikalarini o’zgartirmay kuchaytiradi, majburiy yutish esa susaytiradi degan fikrning boshqacha shaklda aytilgani deb hisoblash mumkin. Lekin optik kvant generatorlari nurlanishning xususiyatlarini tushunish uchun tushayotgan to’lqin bilan majburiy o’tishlar natijasida chiqarilayotgan «ikkilamchi» to’lqinlarning kogerentligi to’g’risidagi tasavvurlarga asoslansak manbadan ma‘lum bir yo’nalishda tarqaluvchi quvvatli nurlanish olish uchun zarur bo’lgan fazoviy sinfazlik shartini majburiy chiqarish jarayonida amalga oshirish mumkinligi ko’rinadi. Haqiqatdan ham, fazoning har xil nuqtalarida joylashgan atomlar chiqarayotgan to’lqinlarning boshlang’ich fazalari mos yo’l farqini kompensatsiyalaydigan bo’lsa, bunday to’lqinlar kuzatish nuqtasida sinfazali ravishda qo’shiladi.
Yuqorida muhokama qilingan va majburiy o’tishlar bilan bog’langan kogerent nur chiqarishdan tashqari, muhit atomlari spontan o’tishlarda ham qatnashib, natijada bir-biri bilan hamda tashqi maydon bilan kogerent bo’lmagan to’lqinlar chiqarilishini yoddan chiqarmaslik kerak. Shunday qilib, aktiv muhitning nurlanishi har doim kogerent va kogerent bo’lmagan qismlarning aralashmasidan iborat bo’lib, ular o’rtasidagi munosabat, xususan, tashqi maydonning intensivligiga bog’liq bo’ladi. Oxirgi holni tushuntirish oson, chunki majburiy chiqarish jarayonida qatnashgan atomlar uyg’onish energiyasidan mahrum bo’ladi va, demak, spontan ravishda nurlantira olmaydi. Yuqoridagini batafsil analiz qilish majburiy o’tishlar ta‘sirida kogerent bo’lmagan spontan nurlanishning to’liq intensivligigina emas, balki uning spektral tarkibi ham o’zgarishini ko’rsatadi.
Energetik sathlari invers ravishda bandlangan muhitning yorug’likni kogerent kuchaytirishi bunday muhitdan monoxromatik nurlanishning yo’naltirilgan oqimi hosil qilish uchun foydalanish imkoniyatini belgilab berdi.
Fabrin-Pero interferometrlarida qo’llaniladigan ko’zgularga o‗xshash ikki ko’zgu o’rtasiga qo’yilgan aktiv muhit yorug’likni qanday nurlantirishini ko’raylik (1-rasm).

3- rasm. Optik kvant generatorining prinsipial chizmasi
Bunday sistemani aktiv optik rezonator deb aytish qabul qilingan. A nuqtadagi uyg’ongan atom invers balandlikka ega bo’lgan sathlar o’rtasidagi spontan o’tish natijasida to’lqin chiqargan bo’lsin.
To’lqin aktiv muhitda o’tadigan yo’l qancha katta bo’lsa, to’lqin shuncha kuchayadi. Rezonator o’qiga perpendikulyar bo’lgan yo’nalishlarda kuchaytirish eng kam bo’ladi. Boshqa yo’alishlarga birmuncha ko’proq yo’l mos keladi va demak, birmuncha ko’proq kuchaytirish mos keladi. (1-rasmda) bunday hol kuchaytirilayotgan yorug’lik oqimidagi strelkalarning sonini ko’paytirish bilan sxematik ravishda ko’rsatilgan. Kuzgudan qaytgandan keyin to’lqin yana aktiv muhitda tarqaladi va uning amplitudasi o’sib boradi. Keyin to’lqin qarama-qarshi turgan ko’zguga etadi, undan qaytadi va aktiv muhitda ko’chayishda davom etadi, shundan so’ng aytib o’tilgan sikldagi hamma bosqichlar takrorlanadi va rezanatordagi to’lqinning energiyasi ortib boradi.
Aktiv muhit tomonidan kuchaytirilishdan tashqari, rezonator ichidagi to’lqinning amplitudasini kamaytiradigan qator faktorlar ham ta‘sir qiladi. Rezonator ko’zgularining qaytarish koeffitsiyenti birga teng emas. Uning ustiga nurlanishni rezonatordan chiqarish uchun ko’zgulardan hech bo’lmaganda bittasi qisman shaffof qilib yasaladi. Bundan tashqari, nurlanish rezonator o’qi bo’ylab tarqalayotganda nurlanish oqimining energiyasi oqimning difraksiyasiga, rezonatordagi muhitda sochilishiga va hokozalarga ham sarflanadi. Energiyaning bunday isroflarini ko’zgular uchun ularning haqiqiy r qaytarish koeffitsiyentidan kichik bo’lgan reff effektiv qaytarish koeffitsiyentini kiritib hisobga olish mumkin.
Agar to’lqinning L yo’ldagi kuchayishi uning ko’zgulardan qaytgandagi energiya isroflarining yig’indisidan katta bo’lsa, har bir yugurishdan so’ng to’lqinning amplitudasi borgan sari kattaroq bo’ladi. To’lqin energiyasining u( ) zichligi kuchaytirish koeffitsiyentining kattaligi to’yinish effekti natijasida ancha kamayadigan bo’lguncha to’lqin kuchayaveradi. Statsionar holat muhitdagi kuchayishning energiya isroflari yig’indisi bilan raso kompensatsiyalanish shartiga mos keladi. Shunday qilib, lazerlardan nurlanishni generatsiya qilish masalasida to’yinish effekti prinsipial ahamiyatga ega.
Nurlanishning yo’naltirilgan oqimini generatsiyalash imkoniyatini belgilaydigan miqdoriy munosabatni quyidagi mulohazalar asosida topish mumkin. Aktiv muhitdagi biror А nuqtada vujudga kelgan va spektral zichligi I0 bo’lgan nurlanish oqimi rezonator o’qi bo’ylab yo’nalib, o’ng tomondagi ko’zguga borayotib kuchayadi, undan qaytadi va chap ko’zgudan qaytgandan so’ng o’zining dastlabki yo’nalishida tarqalib, yana А nuqtadan o’tadi. Shunday qilib, nurlanish rezonatori tarqalishining bir siklida 2L ga teng yo’l bosib o’tadi. Agar energiya hech isrof bo’lmasa, oqim I0 exp[2 ( )L] ga teng kattalikkacha kuchayishi kerak, bu yerda  ( ) - kuchaytirish koeffitsiyenti. Lekin ko’zgularning effektiv reff qaytarish koeffitsiyenti orqali hisobga olingan energiya isroflari natijasida energiya oqimining rezonatordagi bir sikl tarqalishidan keyingi zichligi  ifoda bilan aniqanadi. Shuning uchun rezonatorda nurlanish generatsiya qilish imkoniyati to’g’risidagi masalaning
 >
 >1 (3)
shartga keltiriladi. Bu yerda - kuchaytirish koeffitsiyentining intensivliklar kichik bo’lgandagi, ya‘ni to’yinish effekti hisobga olinmagan holdagi qiymati (to’yinmagan kuchaytirish koeffitsiyenti). (3) munosabat tenglikka aylanganda generatsiyaning bo’sag’a shartlariga erishilgan bo’ladi.
Yuqorida aytilganlarga mos ravishda generatsiyaning statsionar quvvati quyidagi shart bilan aniqlanadi:
 (4)
bu munosabatni potensirlab,
 (5)
shartlarni topamiz. (4) yoki (5) shartlar statsionar generatsiya shartlari deyiladi.
Yuqorida kiritilgan f kattalik energiyaning nisbiy isroflari yoki qisqacha isroflar deyiladi. Ba‘zan f kattalik o’rniga rezonatorning aslligi deb ataladigan Qr kattalikdan foydalaniladi. Tebranuvchi sistemaning asilligi deb, sistemada jamg’arilgan energiyaning sistemadan tebranishning bir  davrida chiqayotgan energiyaga nisbatiga aytiladi. Optik rezonatorlarda yuqorida aytilgancha ta‘riflangan asllik f isroflarga
 (6)
munosabat orqali bog’langan, bu yerda q – rezonatorning L uzunligida joylashgan yarim to’lqinlar soni.
Spontan nurlanishning aktiv rezonatorda kuchaytirilishi va nihoyat, shu rezonatorning kogerent nurlari generatorlariga aylanishi avtotebranuvchi sistemalarda generatsiya o’z-o’zidan uyg’ongan vaqtda rivojlanib boradigan jarayonlarga juda o’xshashdir. Bunday sistemalarda tebranuvchi sistema bilan tebranishlarni ta‘minlab turgan energiya manbai o’rtasidagi musbat teskari bog’lanish muhim rol o’ynaydi. Induktiv musbat teskari bog’lanishning mohiyati qiyosan sodda bo’lishini elektron lampali tebranish generatorida ko’rishimiz mumkin.
Optik kvant generatorlarida ko’zguli rezonator nurlanish maydoni bilan uning energiya manbai- aktiv muhit o’rtasida musbat teskari bog’lanish vujudga keltiradi. Rezonatorning ko’zgulari tufayli yorug’lik oqimi aktiv muhitda ko’p marta tarqaladi (shu bilan u kuchayadi). Bu hol generatsiyaning o’z-o’zidan uyg’onishi hamda uni davom ettirish uchun zarur. Lekin rezonatorning lazer ishidagi vazifasi maydon energiyasining zichligini aktiv muhitda ko’paytirishdangina iborat bo’lmaydi. Yuqorida ko’rsatib o’tilgan o’xshashlikka asosan, avtotebranuvchi rejimning vujudga kelishi uchun teskari bog’lanish musbat bo’lishi kerak. Boshqacha qilib aytganda, sistemada bo’lgan hamda teskari bog’lanish kanali orqali kelayotgan tebranishlar o’rtasida qat‘iy sinfazalik mavjud bo’lishi shart.
Bundan ko’rinadiki optik kvant generatorlari fizikaning turli sahalarida paydo bo’lgan uchta asosiy g’oyaga asoslangan. Birinchi g‘oya Eynshteynga tegishli bo’lib, u kogerent bo’lmagan issiqlik nurlanishi nazariyasida majburiy chiqarish jarayoni mumkin ekanligini postulat qilib aytgan. Ikkinchi asosiy g‘oya muvozanatda bo’lmagan termodinamik sistemalardan foydalanish bo’lib, bu sistemalarda elektromagnitik to’lqinlar yutilmasdan, balki kuchayishi mumkin (V.A.Fabrikant, 1940 yil). Nihoyat, radiofizika sohasiga tegishli bo’lgan uchinchi g‘oya - kuchaytiradigan sistemani avtotebranuvchi sistemaga, ya‘ni elektromagnitik kogerent to’lqinlar generatoriga aylantirish uchun musbat teskari bog’lanishdan foydalanishdan iborat.

Yüklə 209,5 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin