2-amaliy ish topshiriqlari: Matlab paketida signallarga spektral ishlov berish
Bu yerda:
x – 0 dan boshlab 0.1 qadam bilan berilgan oraliqgacha davom etadigan to’plam. Misol ucun (x=0:0.1: *N)
N – talabaning jurnaldagi raqami;
Berilgan funksiyalardan variant tanlanib, olingan variantlar ustida quyidagi amallar bajariladi:
1-berilgan z(x) funksiya ustida spektral o‘zgartirish algoritmlari asosida to‘g‘ri va teskari o‘zgartirishni amalga oshirish, kiruvchi va chiquvchi signallarni taqqoslash.
Olingan natijalar va dastlabki natijalar bilan birgalikda grafik orqali ifodalanadi.
Izoh: N hamma uchun jurnaldagi tartib raqami. Berilgan oraliq intervallariga qattiy rioya qilinishi shart. Ishninh yakunida amaliy ish bo’yicha xulosalar keltirilishi kerak. Titul pastda keltirilgan.
Variantlar
№
|
z(x)
|
O‘zgartirish algoritmi
|
Interval
|
1.
|
z=cos(x/π)-2sin(πx)
|
Deskret Fure
|
x (0; π*N), Δx=0.01
|
2.
|
z=cos(x2/π)-sin(πx/2)
|
Deskret Cosinus
|
x (0; π *N), Δx=0.01
|
3.
|
z=cos(xπ)+2sin(x)
|
Deskret Fure
|
x (0; 9/π *N, Δx=0.01
|
4.
|
z=2cos(xπ)+sin(πx/2)
|
Deskret Fure
|
x (0; 9/π *N), Δx=0.01
|
5.
|
z=3cos(x/π)-2sin(x/2π)
|
Deskret Cosinus
|
x (0; 8/π *N), Δx=0.01
|
6.
|
z=5cos(x2/π)-2sin(πx/2)
|
Deskret Cosinus
|
x (0; 8/π *N), Δx=0.01
|
7.
|
z=cos(x2/π)-sin(πx/4)
|
Deskret Fure
|
x (0; 7/π *N), Δx=0.01
|
8.
|
z=cos(2x)+2sin(πx/3)
|
Deskret Cosinus
|
x (0; 7/π *N Δx=0.01
|
9.
|
z=cos(x/3π)+2sin(πx/5)
|
Deskret Fure
|
x (0; 6/π *N), Δx=0.01
|
10.
|
z=cos(xπ)+2sin(x/2)
|
Deskret Fure
|
x (0; 6/π *N), Δx=0.01
|
11.
|
z=2cos(x*1/2)+sin(πx/2)
|
Deskret Cosinus
|
x (0; 5/π *N), Δx=0.01
|
12.
|
z=3cos(x2/π)-2sin(xπ)
|
Deskret Cosinus
|
x (0; 5/π *N), Δx=0.01
|
13.
|
z=5cos(x-2/π)-2sin(πx/2)
|
Deskret Fure
|
x (0; 4/π *N), Δx=0.01
|
14.
|
z=cos(xπ/2)-sin(xπ/3)
|
Deskret Cosinus
|
x (0; 4/π *N), Δx=0.01
|
15.
|
z=cos(2+x/π) +2sin(x)
|
Deskret Fure
|
x (0; 3/π *N), Δx=0.01
|
16.
|
z=cos(xπ)+2sin(xπ/5)
|
Deskret Fure
|
x (0; 3/π *N), Δx=0.01
|
17.
|
z=cos(x/π)+2sin(xπ)
|
Deskret Cosinus
|
x (0; 2.5/π *N), Δx=0.01
|
18.
|
z=cos(x+2/π)+2sin(2xπ)
|
Deskret Cosinus
|
x (0; 2.5/π *N), Δx=0.01
|
19.
|
z=cos(x/π6)+2sin(x3π)
|
Deskret Fure
|
x (0; 2/π *N), Δx=0.01
|
20.
|
z=2cos(x/π)+sin(x)
|
Deskret Cosinus
|
x (0; 2/π *N), Δx=0.01
|
21.
|
z=3cos(2x/π)-sin(πx)
|
Deskret Cosinus
|
x (0; 1.5/π *N), Δx=0.01
|
Namuna
Deskret cosinus o‘zgartirish algoritmi uchun
Deskret Fure o‘zgartirish algoritmi uchun
Xulosa: ishning yakunida xulosa yoziladi.
O‘ZBEKISTON RESPUBLIKASI RAQAMLI TEXNOLOGIYALAR VAZIRLIGI MUHAMMAD AL-XORAZMIY NOMIDAGI
TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI
Kompyuter injiniringi fakulteti
Sun’iy intellekt kafedrasi
Signallar va tizimlar fanidan
2-TOPSHIRIQ
Mavzu: Integral o‘zgartirish jarayonlarini o‘rganish va spektral tahlil qilish
Bajardi: ________ guruh talabasi
__________________________
Tekshirdi: Abdug‘aniyev Muxriddin
Baho:_____
TOSHKENT 2023
Dostları ilə paylaş: |