Building Econometric Models


Out-of-Sample Forecast Evaluation



Yüklə 0,79 Mb.
səhifə17/23
tarix01.05.2023
ölçüsü0,79 Mb.
#105443
1   ...   13   14   15   16   17   18   19   20   ...   23
Ch9 slides

Out-of-Sample Forecast Evaluation

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • They evaluate the forecasts in two ways:
  • The first is by regressing the realised volatility series on the forecasts plus a constant:
  • (7)
  • where is the “actual” value of volatility, and is the value forecasted for it during period t.
  • Perfectly accurate forecasts imply b0 = 0 and b1 = 1.
  • But what is the “true” value of volatility at time t ?
  • Day & Lewis use 2 measures
  • 1. The square of the weekly return on the index, which they call SR.
  • 2. The variance of the week’s daily returns multiplied by the number of trading days in that week.

Out-of Sample Model Comparisons

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Encompassing Test Results: Do the IV Forecasts Encompass those of the GARCH Models?

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  •  
  •  
  •  
  •  
  •  
  •  

Conclusions of Paper

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  •  
  • Within sample results suggest that IV contains extra information not contained in the GARCH / EGARCH specifications.
  •  
  • Out of sample results suggest that nothing can accurately predict volatility!

Stochastic Volatility Models

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • It is a common misconception that GARCH-type specifications are stochastic volatility models
  • However, as the name suggests, stochastic volatility models differ from GARCH principally in that the conditional variance equation of a GARCH specification is completely deterministic given all information available up to that of the previous period
  • There is no error term in the variance equation of a GARCH model, only in the mean equation 
  • Stochastic volatility models contain a second error term, which enters into the conditional variance equation.

Yüklə 0,79 Mb.

Dostları ilə paylaş:
1   ...   13   14   15   16   17   18   19   20   ...   23




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin