Building Econometric Models


Parameter Estimation using Maximum Likelihood (cont’d)



Yüklə 0,79 Mb.
səhifə9/23
tarix01.05.2023
ölçüsü0,79 Mb.
#105443
1   ...   5   6   7   8   9   10   11   12   ...   23
Ch9 slides

Parameter Estimation using Maximum Likelihood (cont’d)

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Then the joint pdf for all the y’s can be expressed as a product of the individual density functions 
  • (2)
  •  
  • Substituting into equation (2) for every yt from equation (1),
  • (3)
  •  

Parameter Estimation using Maximum Likelihood (cont’d)

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • The typical situation we have is that the xt and yt are given and we want to estimate 1, 2, 2. If this is the case, then f() is known as the likelihood function, denoted LF(1, 2, 2), so we write
  •  
  • (4)
  •  
  • Maximum likelihood estimation involves choosing parameter values (1, 2,2) that maximise this function.
  •  
  • We want to differentiate (4) w.r.t. 1, 2,2, but (4) is a product containing T terms.
  •  

Parameter Estimation using Maximum Likelihood (cont’d)

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Since , we can take logs of (4).
  •  
  • Then, using the various laws for transforming functions containing logarithms, we obtain the log-likelihood function, LLF:
  •  
  •  
  • which is equivalent to
  •  
  • (5)
  •  
  • Differentiating (5) w.r.t. 1, 2,2, we obtain
  •  
  • (6)

Parameter Estimation using Maximum Likelihood (cont’d)

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • (7)
  • (8)
  •  Setting (6)-(8) to zero to minimise the functions, and putting hats above the parameters to denote the maximum likelihood estimators,
  •  
  • From (6),
  • (9)

Yüklə 0,79 Mb.

Dostları ilə paylaş:
1   ...   5   6   7   8   9   10   11   12   ...   23




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin