|
Parameter Estimation using Maximum Likelihood (cont’d)
|
səhifə | 9/23 | tarix | 01.05.2023 | ölçüsü | 0,79 Mb. | | #105443 |
| Ch9 slides
Parameter Estimation using Maximum Likelihood (cont’d) - ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
- Then the joint pdf for all the y’s can be expressed as a product of the individual density functions
-
- (2)
-
-
-
- Substituting into equation (2) for every yt from equation (1),
- (3)
-
Parameter Estimation using Maximum Likelihood (cont’d) - ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
- The typical situation we have is that the xt and yt are given and we want to estimate 1, 2, 2. If this is the case, then f() is known as the likelihood function, denoted LF(1, 2, 2), so we write
-
-
- (4)
-
- Maximum likelihood estimation involves choosing parameter values (1, 2,2) that maximise this function.
-
- We want to differentiate (4) w.r.t. 1, 2,2, but (4) is a product containing T terms.
-
Parameter Estimation using Maximum Likelihood (cont’d) - ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
- Since , we can take logs of (4).
-
- Then, using the various laws for transforming functions containing logarithms, we obtain the log-likelihood function, LLF:
-
-
- which is equivalent to
-
- (5)
-
- Differentiating (5) w.r.t. 1, 2,2, we obtain
-
- (6)
-
Parameter Estimation using Maximum Likelihood (cont’d) - ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
- (7)
-
- (8)
- Setting (6)-(8) to zero to minimise the functions, and putting hats above the parameters to denote the maximum likelihood estimators,
-
- From (6),
-
-
-
-
- (9)
Dostları ilə paylaş: |
|
|