1-Lemma (Jordan lemmasi). Agar (30) bo’lsa, (31) bo’ladi. 2-Lemma. (Jordan lemmasi). Agar (32) bo’lsa, u holda uchun (33) bo’ladi.
Endi
ko’rinishdagi xosmas integrallarni qaraylik.
Agar bo’lsa, u holda bu integralga 2-lemmani va yuqoridagi teoremani qo’llash natijasida quyidagi formulalarni hosil qilamiz:
, (34)
, (35)
1-misol. Ushbu
integralni hisoblang.
funksiya deb
ni olamiz. Bu funksiyaning 2ta va qutb nuqtalari bo’lib, ulardan bo’ladi.
funksiya uchun da bo’lganidan 2-lemma shartining bajarilishi ta’minlanadi. Unda (36)-formulaga ko’ra
bo’ladi.
(23)-formuladan foydalanib ni hisoblaymiz:
Demak,
2–Misol. hisoblansin.
bo’lsin. U holda
, , .
Maxsus nuqtalarni topib olamiz:
bo’ganligi uchun birinchi aylana ichida maxsus nuqta bor. Bu maxsus nuqta birinchi tartibli qutbdir. Shunga asosan
Demak, .
3–Misol. hisoblansin.
bu funksiya maxsus nuqtalarga ega bo’lib, bu maxsus nuqtalar to’rtinchi tartibli qutbdir. Yuqori yarim tekislikda faqat nuqta yotadi.
n-chi tartibli qutb bo’lsa,
4–Misol. hisoblansin.
Bunda,
Adabiyоtlar:
1. Шабат Б.В. Введение в комплексный анализ. 2-nashri, 1-ч.-М, “Наука”, 1976. 2. Xudoyberganov G., Vorisov A., Mansurov X. Kompleks analiz. (ma’ruzalar). T, “Universitet”,1998. 3. Sadullaev A., Xudoybergangov G., Mansurov X., Vorisov A., Tuychiev T. Matematik analiz kursidan misol va masalalar to’plami. 3-qism (kompleks analiz) “O’zbekiston”,2000. 4. Волковыский Л.И., Лунц Г.Л., Араманович И.Г. Сборник задач по теории функций комплексного переменного. 3- nashri. – М. “Наука”, 1975.