Chirchiq davlat pedagogika universiteti matematika va informatika sirtqi yo’nalishi 1-bosqich 22/1-guruh talabasi boboraimova Feruza Algebra va sonlar nazariyasi fanidan Binar munosabatlarni grafik orqali ifodalash mavzusida mustaqil ishi



Yüklə 1,65 Mb.
tarix19.10.2022
ölçüsü1,65 Mb.
#65475
Binar munosabatlarni grafik orqali ifodalash


CHIRCHIQ DAVLAT PEDAGOGIKA UNIVERSITETI matematika va informatika SIRTQI yo’nalishi 1-BOSQICH 22/1-GURUH TALABASI Boboraimova Feruza Algebra va sonlar nazariyasi fanidan Binar munosabatlarni grafik orqali ifodalash mavzusida mustaqil ishi
Qabul qildi: Qarshiboyev O
Chirchiq 2022-yil
Binar munosabat tushunchasi. Graflar.
Ma’lumki, to‘plam tushunchasi matematika fanining asosiy tusunchalaridan biri bo‘lib, bu fan taraqqiyotida muhim o‘rin egallaydi. Natural sonlar to‘plamini o‘rganish boshlang‘ich sinflardanoq boshlanadi. Bu ish sonlar orasidagi turli-tuman o‘zaro bog‘lanishlarni o‘rganish bilan amalga oshiriladi. Masalan, 10 soni 7 sonidan katta (ortiq), 8 soni 5 sonidan 3 ta ko‘p, 6 soni 5 sonidan keyin keladi.
Natural sonlar to‘plami elementlari orasida yana ko‘plab munosabatlarni o‘rganish mumkin. To‘g‘ri chiziqlar to‘plamida “parallel bo‘lishlik”, “perpendikulyar bo‘lishlik”, “o‘zaro kesishish” va h.k.
Endi ixtiyoriy X to‘plam elementlari orasidagi munosabat tushunchasini keltiramiz.
Ta’rif. X to‘plam elementlari orasidagi munosabat yoki X to‘plamda munosabat deb, Dekart ko‘paytmasining har qanday qism to‘plamiga aytiladi.
Munosabat. R, S, Q va hokazo harflar bilan belgilanadi.
X to‘plamdagi munosabatni ko‘rgazmali tasvirlash uchun nuqtalar strelkalar yordamida tutashtiriladi va chizma hosil qilinadi. Bunday chizma graf deb ataladi. Masalan, X={3,4,5,6,8} to‘plamda qaralgan R, S va Q munosabatlarning graflarini 1-, 2-, 3-chizmada tasvirlaymiz.
X={2,4,6,8,12} to‘plamda P: x soni y sonining bo‘luvchisi” degan munosabatni qaraymiz va grafini chizamiz. X to‘plam elementlarini nuqtalar bilan tasvirlab, x dan y ga strelkalar chiqaramiz. Masalan, 2 dan 4 ga strelka chiqaramiz, chunki 2 soni 4 ning bo‘luvchisi. Lekin har bir son o‘zi o‘zining bo‘luvchisi. Shuning uchun har bir x nuqtadan chiqqan strelka yana o‘ziga qaytadi. Grafda boshi va oxiri ustma-ust tushgan strelkalar sirtmoqlar deyiladi (4-chizma).
X to‘plam to‘g‘ri chiziqlar to‘plamidan iborat bo‘lsin. Bu to‘plamda parallellik munosabatini qaraymiz (5-chizma). Ko‘rinib turibdiki, a ∕ ∕ b, c ∕ ∕ e, b ∕ ∕ a, e ∕ ∕ c, a ∕ ∕ a, b ∕ ∕ b, c ∕ ∕ c, e ∕ ∕ e, d ∕ ∕ d. Bu munosabatning grafini G={(a,b), (b,a), (c,e), (e,c), (a,a), (b,b), (c,c), (e,e), (d,d)} to‘plamdan iborat. Uning grafi 6-chizmadagidek bo‘ladi.
Munosabatlarning xossalari.
1. Refleksivlik. Agar X to‘plamdagi ixtiyoriy element haqida u o‘z-o‘zi bilan R munosabatda deyish mumkin bo‘lsa, X to‘plamdagi munosabat refleksiv munosabat deyiladi va xRx ko‘rinishda yoziladi. Masalan, parallellik va tenglik munosabatli refleksivlik xossasiga ega: a ∕ ∕b bo‘lsa, b ∕ ∕a bo‘ladi, a=b bo‘lsa, b=a bo‘ladi. Ularning graflarida sirtmoqlar bo‘ladi.
Ekvivalentlik munosabati.
Ta’rif. Agar X to‘plamda berilgan R munosabat refleksiv, simmetrik va tranzitiv bo‘lsa, u holda y ekvivalentlik deyiladi.
Masalan, to‘g‘ri chiziqlarning parallelligi munosabati, figuralarning tenglik munosabati, biror universitetdagi “kursdoshlik”, so‘zlar to‘plamida “o‘zakdoshlik” kabi munosabatlar refleksiv, simmetrik va tranzitiv munosabatlardan iborat, ya’ni ular ekvivalentlik munosabatlardir
2. To‘plamlarni juft-jufti bilan kesishmaydigan qism to‘plamlarga ajratish.
Ta’rif. Agar bir vaqtning o‘zida quyidagi shartlar bajarilsa, X to‘plam juft-jufti bilan kesishmaydigan qism to‘plamlarga ajratiladi deyiladi:
1. Bo‘linish hosil qilgan qism to‘plamlar bo‘sh emas.
2. Bunday qism to‘plamlarning hech biri o‘zaro kesishmaydi.
3. Barcha qism to‘plamlarning birlashmasi berilgan to‘plam bilan ustma-ust tushadi. Masalan, N natural sonlar to‘plamini uchta o‘zaro kesishmaydigan qism to‘plamlarga ajratish mumkin: 1) tub sonlar to‘plami; 2) murakkab sonlar to‘plami; 3) 1 dan tashkil topgan to‘plam. N to‘plamni ikkita sinfga ham ajratish mumkin – juft sonlar to‘plami va toq sonlar to‘plami.
Tartib munosabati.
Tartib tushunchasi matematikada va umuman hayotda ko‘p uchraydi. Bu tushuncha biror X to‘plamda “x y dan keyin keladi” munosabat orqali beriladi. Bu munosabat tranzitiv va antisimmetrik bo‘ladi: agar x y dan keyin, y esa z dan kelsa, x z dan keyin keladi va x y dan keyin kelishidan y x dan keyin kelishi kelib chiqmaydi. Tartib munosabatiga matematikada amallarni bajarish, auditoriyadagi talabalarni bo‘ylari bo‘yicha safga tortish, o‘zbek alifbosida harflarning kelish tartibi va hokazolar misol bo‘ladi.

E’TIBORINGIZ UCHUN RAXMAT


Yüklə 1,65 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin