CHIZIQSIZ TENGLAMALAR SISTEMASINI TAQRIBIY YECHISHDA NYUTON USULI
Quyidagi ko‘rinishdagi sistema berilgan bo‘lsin.
(1)
Biz buyerda sistemaning yagona yechimi mavjud bo‘lgan soha D ma’lum deb hisoblaymiz. Shu sohadagi taqribiy yechimni berilgan >0 aniqlikda topish uchun quyidagi iteratsion jarayon tatbiq qilinadi. Avvalo boshlang‘ich yaqinlashish tanlanadi. Keyingi qadamlar esa quyidagi formulalar bilanhisoblanadi.
(2)
Bu yerda
(3)
(8) formulalarda funksiyalar va ularning hosilalarining qiymatlari nuqtada hisoblanadi. (7) formulalar bo‘yicha hisoblashlar esa talab qilingan aniqlik bajarilguncha, ya’ni
(4)
Shart bajarilguncha davom ettiriladi.
Misol
Yechilishi
bu yerda f1(x,y)= f2(x,y)=
Variant raqami
|
Chiziqsiz tenglamalar sistemasi yechimini Nyuton usuli bilan toping
|
|
|
D={x>0; y>0} E=0.004
|
x
|
y
|
d
|
d1
|
d2
|
E
|
1
|
0,5
|
2
|
-8,25
|
1
|
|
5,125
|
0
|
10,25
|
17,26563
|
-31,9688
|
4,155192535
|
3,4405488
|
3,118902
|
37,32843
|
30,26393
|
41,80638
|
3,544704266
|
2,6298015
|
1,998942
|
18,29111
|
4,539477
|
2,773937
|
1,382614702
|
2,3816221
|
1,847287
|
14,97225
|
0,312152
|
-0,05963
|
0,290847377
|
2,3607734
|
1,85127
|
14,79818
|
0,00206
|
-0,00083
|
0,02122574
|
2,3606342
|
1,851325
|
14,79718
|
9,42E-08
|
-3E-08
|
0,000149978
|
#include
using namespace std;
int main()
{
float f1,f2,f1xhosila,f2xhosila,f1yhosila,f2yhosila,D, D1, D2,x[10],y[10];
int n;
cout<cout<<"Ikkita chiziqsiz tenglamalar sistemasini taqribiy yechishda NYUTON usuli"<cout<x[0]=1; y[0]=0.5;
for(n=0; ;n++)
{
f1=pow(x[n],2)-2*x[n]-y[n]+1;
f2=pow(x[n],2)+pow(y[n],2)-9;
f1xhosila=2*x[n]-2;
f1yhosila=-1;
f2xhosila=2*x[n];
f2yhosila=2*y[n];
D=f1xhosila*f2yhosila-f1yhosila*f2xhosila;
D1=f1*f2yhosila-f2*f1yhosila;
D2=f2*f1xhosila-f1*f2xhosila;
x[n+1]=x[n]-D1/D;
y[n+1]=y[n]-D2/D;
cout<<"x["<if(sqrt(pow(x[n+1]-x[n],2)+pow(y[n+1]-y[n],2))<0.004)
break;
}
cout<cout<<"tenglamaning taqribiy yechimi"<Yüklə 493 Kb. Dostları ilə paylaş: |