выбор шага дискретизации при заданной погрешности дискретизации (приближения, восстановления);
оценка существенности отсчетов, обеспечивающих представление исходного сигнала с заданной точностью, и устранение возможной избыточности.
Алгоритм решения задачи дискретизации:
по имеющимся отсчетам, используя базисные ортогональные функции и методы интерполяции или экстраполяции, строят с той или иной мерой приближения исходный сигнал, т.е. получают воспроизводящую функцию
оценивают эффективность дискретизации при выбранном методе аппроксимации, определяя погрешность дискретизации (восстановления) по заданному шагу дискретизации или шаг дискретизации по заданной погрешности.
Выбор системы базисных функций в составе аппроксимирующего полинома (см. 1.3) определяется требованием обеспечения простоты технической реализации аппаратных (программных) средств дискретизации и восстановления сигнала. При неортогональных представлениях сигнала часто используют степенные алгебраические полиномы вида:
(1.4)
где действительные коэффициенты. В качестве ортогональных базисных функций используют функции отсчетов (ряд Котельникова), полиномы Лежандра, функции Уолша и другие. Если базисные функции выбраны так, что значения аппроксимирующего полинома совпадают со значениями выборки исходного сигнала в моменты их отсчета, то такой полином называют интерполирующим. С точки зрения сокращения числа отсчетов интерполяционные методы восстановления сигнала предпочтительнее, однако для их реализации необходима задержка сигнала на интервал интерполяции, что в ряде случаев недопустимо. В системах управления, работающих в реальном времени, используют экстраполяционные методы, не требующие задержки сигнала при проведении операций определения значений выборок и восстановления сигнала.
При выбранном способе построения воспроизводящей функции должна обеспечиваться заданная точность восстановления сигнала. В зависимости от целевого назначения получаемой информации используют различные критерии точности приближения к определяющие численные значения погрешности восстановления и, следовательно, дискретизации.