səhifə 13/13 tarix 13.12.2023 ölçüsü 33,05 Kb. #176265
03-thema-combinations
A \u003d (the point falls into circle A)
B \u003d (point falls into triangle B)
IN
A
A + B \u003d (the point falls into at least one figure A and B).
Basic concepts A-B \u003d (the point will fall into circle A and will not fall into triangle B)
A
IN
A
Basic concepts
IN
A
AB \u003d (the point falls into both figures A and B).
Basic concepts An event is called opposite to an event if it occurs if and only if the event does not occur.
A
A \u003d (the point falls into circle A)
=(point is not in circle A)
Basic concepts Events A and B are called incompatible if they cannot occur together in the same experiment.
IN
A
A \u003d (the point falls into circle A)
B \u003d (point falls into triangle B)
A and B are incompatible events
Operation Properties A+B=B+A (A+B)+C=A+(B+C) A + Ǿ \u003d A A+ Ω = Ω
AB=BA
A(BC)=(AB)C
And Ǿ = Ǿ
A Ω = A
Ǿ
( A + B ) C=A C + B C
(D.z.)
Consider a stochastic experiment.
1. Events ω mutually exclude each other.
2. As a result of the experiment , be sure
one of them comes.
3. For any event A,
upon the occurrence of the event ω , we can say that
event A occurred or did not occur.
The events ω are elementary .
Space of elementary events Example 3. Throwing a dice. =(drop number 1) =(drop number 2) - - - - - - - - - - - - - - - - - =(drop number 6) Space of elementary events Example 4 A factory produces N items of the same type. To assess the quality , m products are selected and examined.
ω is any set of m products.
- space of elementary events .
Definition of probability Consider the stochastic experiment. Definition of probability Properties probabilities: 1) 2)
P ( Ǿ )=0Dostları ilə paylaş: