Endodontology


particles that enhance the adaptation at the cavity surface



Yüklə 0,65 Mb.
Pdf görüntüsü
səhifə5/6
tarix27.05.2022
ölçüsü0,65 Mb.
#59769
1   2   3   4   5   6
Endodontology34116-3350829 091828


particles that enhance the adaptation at the cavity surface 
and dentine interface (Alazrag et al.).
[30]
In this study, the 
Table 2: Repeated-measures ANOVA
Groups
Mean±SD
F
P
Baseline reading
1
st
 week
2
nd
 weeks
3
rd
 weeks
4
th
 weeks
5
th
 weeks
6
th
 weeks
Group 1
0.058±0.006*
0.071±0.008
0.073±0.008
0.074±0.007
0.074±0.007
0.074±0.007
0.074±0.007
23.58
<0.001
Group 2
0.039±0.007*
0.049±0.008
0.058±0.006
0.060±0.004
0.060±0.004
0.060±0.004
0.060±0.004
21.88
<0.001
Group 3
0.021±0.007*
0.039±0.007
#
0.0490±0.009
0.0590±0.009
0.0590±0.009
0.0590±0.009
0.0590±0.009
106.95
<0.001
Group 4
0.452±0.014
0.606±0.067
0.649±0.027
0.678±0.0139
0.688±0.010
0.7010±0.014
0.7060±0.0117
102.273
<0.001
*Significantly lower compared to 3
rd
, 4
th
, 5
th
, and 6
th
weeks at P<0.05, 
#
The mean difference of OD between 1
st
versus 3
rd
, 4
th
, 5
th
, and 6
th
weeks are statistically significant at 
P<0.05. SD: Standard deviation, OD: Optical density
[Downloaded free from http://www.endodontologyonweb.org on Thursday, April 7, 2022, IP: 195.158.14.172]


20
Antony, et al.: Bacterial microleakage of bioceramic root‑end filling materials
Endodontology / Volume 34 / Issue 1 / January‑March 2022
leakage value obtained for ProRoot MTA was higher than 
Biodentine in all the 6 weeks.
ESRRM putty displayed the least leakage value in all the 
6 weeks and after the 3
rd
week, both Biodentine and ESRRM 
showed similar results and lesser leakage than ProRoot 
MTA. ESRRM putty is calcium phosphate silicate cement 
and consists of phosphate salts in addition to hydraulic 
calcium silicates.
[31]
It is mainly composed of calcium silicates, 
monobasic calcium phosphate, zirconium oxide, tantalum 
oxide, proprietary fillers, and thickening agents.
[32]
It has been 
developed as ready‑to‑use premixed bioceramic material 
which overcomes the difficulty in handling of the other 
powder/liquid bioceramic products. The moisture present 
in the dentinal tubules is adequate to allow the material to 
set.
[33]
This also eliminates the potential of heterogeneous 
consistency during mixing as the material is premixed with 
nonaqueous but water‑miscible carriers. It will not set 
during storage and hardens only on exposure to an aqueous 
environment.
[34]
This least leakage value for ESRRM which 
was attained in the first reading itself may be due to the 
smaller particle size and the homogeneous consistency of 
the premixed material. This can also be attributed to the 
higher pH which will be attained earlier due to the lower 
setting time.
The particle size distribution also affects the sealing properties 
of these bioceramic powders. Smaller particles may penetrate 
tubules and hydrate faster than larger particles because of their 
higher surface‑to‑volume ratio.
[35]
ESRRM putty has nanosphere 
particles with a maximum diameter of 1 × 10
‑3
µm that allow for 
the material to enter dentinal tubules, be moistened by dentine 
liquid, and create a mechanical bond upon setting which may 
be another reason for its increased sealing property.
[36]
From the results obtained it can be concluded that use of 
retrograde materials reduced microleakage to a significant 
amount. Among the different biomaterials used for 
retrograde restoration, ESRRM putty showed the lowest 
leakage in the baseline reading. As it reaches the 6
th
week, 
both ESRRM putty and Biodentine have got comparable 
leakage values. In all the weeks, ProRoot MTA has got the 
highest microleakage. Hence, both Biodentine and ESRRM 
putty can be used interchangeably as retrograde restorative 
materials. However, ESRRM putty is available as premixed 
form and has improved handling characteristics when 
compared to the powder liquid form of Biodentine and 
ProRoot MTA.
Financial support and sponsorship
Nil.
Conflicts of interest
There are no conflicts of interest.
REFERENCES
1. Gutamann J. Obturation of the cleaned and shaped root canal system.
In: Pathways of the Pulp. Mosby publishers; 1998. p. 258‑361.
2. Barbosa FO, Gusman H, Pimenta de Araújo MC. A comparative study
on the frequency, location, and direction of accessory canals filled with
the hydraulic vertical condensation and continuous wave of condensation
techniques. J Endod 2009;35:397‑400.
4. Yatsushiro JD, Baumgartner JC, Tinkle JS. Longitudinal study of the
microleakage of two root‑end filling materials using a fluid conductive
system. J Endod 1998;24:716‑9.
5. Hargreaves KM, Cohen S, Berman LH. Cohen’s Pathways of the Pulp.
Mosby Elsevier; 2011.
6. Rajendraprasad D. Review on biodentine: A boon to pediatric dentistry.
Int J Oral Health Dent 2019;5:55‑8.
7. Charland T, Hartwell GR, Hirschberg C, Patel R. An evaluation of
setting time of mineral trioxide aggregate and EndoSequence root repair
material in the presence of human blood and minimal essential media.
J Endod 2013;39:1071‑2.
8. Joiner A. Review of the effects of peroxide on enamel and dentine
properties. J Dent 2007;35:889‑96.
9. Dioguardi M, Gioia GD, Illuzzi G, Laneve E, Cocco A, Troiano G.
Endodontic irrigants: Different methods to improve efficacy and related
problems. Eur J Dent 2018;12:459‑66.
10. Harty FJ, Parkins BJ, Wengraf AM. The success rate of apicectomy.
A retrospective study of 1,016 cases. Br Dent J 1970;129:407‑13.
11. Timpawat S, Amornchat C, Trisuwan WR. Bacterial coronal leakage
after obturation with three root canal sealers. J Endod 2001;27:36‑9.
12. Mjör IA, Smith MR, Ferrari M, Mannocci F. The structure of dentine
in the apical region of human teeth. Int Endod J 2001;34:346‑53.
13.
Erkut, Tanyel RC, Kekli̇koğlu N, Yildirim S, Kati̇boğlu AB. A
comparative microleakage study of retrograd filling materials. Turk J
Med Sci 2006;36.2:113‑20.
14. Khabbaz MG, Kerezoudis NP, Aroni E, Tsatsas V. Evaluation of different
methods for the root‑end cavity preparation. Oral Surg Oral Med Oral
Pathol Oral Radiol Endod. 2004;98:237‑42.
15. Šimundić Munitić M, Budimir A, Jakovljević S, Anić I, Bago I.
Short‑term antibacterial efficacy of three bioceramic root canal
sealers against Enterococcus faecalis biofilms. Acta Stomatol Croat
2020;54:3‑9.
16. Eldeniz AU, Hadimli HH, Ataoglu H, Orstavik D. Antibacterial effect
of selected root‑end filling materials. J Endod 2006;32:345‑9.
17. Odabaş ME, Cinar C, Akça G, Araz I, Ulusu T, Yücel H. Short‑term
antimicrobial properties of mineral trioxide aggregate with incorporated
silver‑zeolite. Dent Traumatol 2011;27:189‑94.
18. Gandolfi MG, Siboni F, Polimeni A, Bossu FR, Riccitiello F, Rengo S,
et al. In vitro screening of the apatite‑forming ability, biointeractivity
and physical properties of a tri calcium silicate material for endodontics
and restorative dentistry. Dent J 2013;1:41‑60.
19. Hansen SW, Marshall JG, Sedgley CM. Comparison of intracanal
EndoSequence Root Repair Material and ProRoot MTA to induce pH
changes in simulated root resorption defects over 4 weeks in matched
pairs of human teeth. J Endod 2011;37:502‑6.
20. Lovato KF, Sedgley CM. Antibacterial activity of endosequence root
repair material and proroot MTA against clinical isolates of Enterococcus
faecalis J Endod. 1;37:1542‑6.
21. Kakani AK, Veeramachaneni C. Sealing ability of three different root
repair materials for furcation perforation repair: An in vitro study.
J Conserv Dent 2020;23:62.
22. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and

Yüklə 0,65 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin