Fazoda Dekart koordinatalar sistemasi va asosiy masalalar. Fazoda sirt va uning tenglamasi


Tekislikning umumiy tenglamasi va uning xususiy hollari



Yüklə 332,5 Kb.
səhifə3/5
tarix25.08.2023
ölçüsü332,5 Kb.
#140468
1   2   3   4   5
fazoda tekislik. tekislikning umumiy

4. Tekislikning umumiy tenglamasi va uning xususiy hollari.
(2) tenglamadan
yoki
bilan belgilashdan keyin
(3)
tenglamani hosil qilamiz. (3) tenglamaga fazoda tekislikning umumiy tenglamasi deyiladi.
Umumiy tenglamaning xususiy hollarini qaraymiz:
1) bo’lsa, bo’lib, tekislik koordinatalar boshidan o’tadi;
2) bo’lsa, bo’lib, tekislik o’qiga parallel; xuddi shunday , tekisliklar mos ravishda va o’qlariga paralleldir;
3) 2-holda bo’lsa, tekislik tenglamalari , , bo’lib, ular mos ravishda , , koordinat o’qlaridan o’tadi;
4) , bo’lsa, tekislik koordinat tekisligiga parallel, xuddi shunday , tekisliklar mos ravishda , koordinat tekisliklariga parallel bo’ladi;
5) bo’lsa, bo’lib, koordinat tekisligi bilan ustma-ust tushadi, ya’ni , koordinat tekisligining tenglamasi bo’ladi. Xuddi shunday va , mos ravishda va koordinat tekisliklarining tenglamasini ifodalaydi .
5. Tekislikning kesmalar bo’yicha tenglamasi. (3) tenglamada koeffitsientlar hammasi 0 dan farqli bo’lsa, tekislik koordinat o’qlaridan , va kesmalar ajratadi(2-chizma). (3) tenglamani quyidagicha o’zgartiramiz:
.
Oxirgi tenglamada
, ,
belgilash kritsak,
tenglama kelib chiqadi. Bu tenglamaga fazoda tekislikning kesmalarga nisbatan tenglamasi deyiladi.
2-misol. Tekislikning umumiy tenglamasi berilgan, bu tekislikni yasang.
Yyechish. Tenglamani tekislikning kesmalarga nisbatan tenglamasiga keltiramiz:
.

2-chizma 3-chizma


Oxirgi tenglamadan ma’lumki, tekislik koordinat o’qlaridan mos ravishda 6, 2, 3 kesmalar ajratadi. Bu kesmalarning oxiridan tekislikni o’tkazamiz (3-chizma).

Yüklə 332,5 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin