Funksiya hosilasining ta’rifi



Yüklə 29,28 Kb.
səhifə8/8
tarix16.10.2023
ölçüsü29,28 Kb.
#156218
1   2   3   4   5   6   7   8
Funksiya hosilasining ta’rifi

4 - Teorema. (2-yetarli shart) f(x0) = 0 bo`lib, x0 statsionar nuqtada ikkinchi tartibli hosila f "(x0) mavjud bo`lsa, u holda agar f (x0) <0 bo`lsa. x0maksimum nuqta, agar f "(x0)>0 bo`lsa, x0 - minimum nuqta va agarda f "(x0) = 0 bo`lsa, x0 nuqtada ekstremumning mavjudlik masalasi ochiq qoladi.
Masala. у = x3 + 6x2 funksiyaning ekstremum nuqtalarini toping.
Funksiya hosilasi y`= 3-(x2+4x) va y`(x) = 0 tenglama yechimlari x = -4, x = 0 nuqtalar uning statsionar nuqtalaridir. Ikkinchi tartibli hosila y"= 6 - (x+2). Statsionar nuqtalarda y"(- 4) = -12 < 0, y"(0) = 12 > 0 bo`lgani uchun, ikkinchi yetarli shartga ko`ra x = - 4 - qat`iy maksimum nuqta va y(- 4) = 32, x = 0 - qat`iy minimum nuqta va y(0) = 0.
5 - Teorema. (3 - yetarli shart) f(x) funksiya uchun x0 nuqta va o`z navbatida f `(x0) = f "(х0) - f(n-1)(x0) = 0 tengliklar o`rinli va f (n)(x0) ≠ 0 bo`lsin. Unda:
  1. agar n juft bo`lib, f(n) (x0) <0 bo`lsa, x0 - qat`iy maksimum nuqta, f(n) (x0) > 0 bo`lsa, x0 – qat`iy minimum nuqta bo`ladi;


  2. agarda n - toq bo`lsa, x0 - ekstremum nuqta bo`lmaydi.


Masalan, у = х4 funksiya uchun y`(x) = 4x3, y"(x) = 12x2, y`"(x) = 24x, y""(x) 24. y` = 0 tenglama yechimi x = 0 statsionar nuqtada y`(0) = y"(0) = y`"(0) = 0 va y""(0) = 24 > 0 bo`lgani uchun, uchinchi yetarli shartga ko`ra x = 0 - qat`iy minimum nuqta va y(0) = 0.




Adabiyotlar
1. Azlarov. T., Mansurov. X., Matematik analiz. T.: «O‘zbekiston». 1 t: 1994, 2 t . 1995
2. Toshmetov O‘. Matematik analiz. Matematik analizga kirish. T., TDPU. 2005y.
3. Hikmatov A.G‘., Turdiyev T. «Matematik analiz», T.1-qism.1990y.
4. Sa’dullayev A. va boshqalar. Matematik analiz kursi misol va masalalar to`plami. T., «O‘zbekiston». 1-q. 1993., 2-q. 1995.
5. Vavilov V.V. i dr. Zadachi po matematike. Nachala analiza. M.Nauka.,1990.-608s.
6. www.ziyonet.uz
http://fayllar.org
Yüklə 29,28 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin