Glikoliza. Plan: Glikoliza



Yüklə 0,68 Mb.
tarix27.04.2023
ölçüsü0,68 Mb.
#103506
GLIKOLIZA ingliz


GLIKOLIZA.

PLAN:


  1. Glikoliza.

  2. Fosforylacja glukozy.

  3. Przesunięcie fosforanu.


Glikoliz (yun. Clylys — shirin va lysis — parchalanish) — uglevodlar (asosan glyukoza)tt sut kislotasigacha anaerob parchalanish jarayoni; bijgʻishning bir turi. G.da ajralib chiqqan energiya adenozintrifosfat (ATF) ning fosfat bogʻlari energiyasiga aylanadi. Bu jarayonda 6 uglerodli qand — D-glyukoza hujayraning asosiy "yonilgʻi"si hisoblanadi. G.da gomofermentativ sut kislotali va spirtli bijgʻish muhim ahamiyatga ega. Birinchi holda 6 uglerodli glyukoza 2 molekula 3 uglerodli sut kislotasigacha parchalanadi. G.ning bu xili koʻpchilik mikroorganizmlar va yuksak hayvonlar, jumladan sut emizuvchilar organizmida sodir boʻladi. Spirtli bijgʻishda 6 uglerodli glyukoza molekulasi 2 ta 2 uglerodli etanol (S2N5ON)ga v 2 molekula uglerod (1U)-oksid (SO2) gacha parchalanadi. G. jarayoni 2 bosqichda amalga oshadi. 1-bosqichda oddiy qandlar toʻplanadi va ular glitserinalde-gidfosfatga aylanib, ATF sarf boʻladi; 2-bosqichda oksidlanish-qaytarilish reaksiyasi tufayli ATF hamda sut kislotasi hosil boʻladi. G.ning ketma-ket reaksiyalarini 11 ta ferment katalizlaydi. Bu fermentlarni erigan holda ajratib olish mumkin. G.ning tayyorgarlik bosqichida har xil uglevodlar ATF hisobiga fosforlanadi va glitserinaldegid-3-fosfat hosil boʻladi. G.ning 2-bosqichi hamma uglevodlar uchun umumiy boʻlib, unda ADF oksidlanish-qaytarilish reaksiyalarida energiya jamgʻarilishi tufayli ATF gacha fosforlanadi. G. ketma-ket boradigan 3 xil reaksiyalar: glyukoza-uglerod skeletining buzilib sut kislotasi hosil boʻlishi; anorganik fosfat ning ATF ning oxirgi guruhiga aylanishi; oksidlanish-qaytarilish reaksiyalari, yaʼni elektronlar oʻtkazish yoʻlidan iborat. G.da glyukoza molekulasidagi kimyoviy energiyaning juda oz qismi ajraladi. Kislorodli bosqichda glyukoza oxirgi mahsulot — SO2 va N2O gacha parchalanib, ancha koʻp miqdordagi energiya ajralib chiqadi. G.da nafas olishga nisbatan kam energiya ajralishi glyukozaga oʻxshash murakkab modda — sut kislotasi xrsil boʻlishi bilan bogʻliq. Shuning uchun sut kislotasining oksidlanish darajasi glyukozaning oksidlanish darajasiga teng . Muskullar qisqarganda sut kislotasi koʻpayib, glikogen kamayadi. Bu hol muskul qisqarishida G. energiya manbai boʻlishini koʻrsatadi. Baʼzan G. zaxiralari bilan ishlov berilganda ham muskul qisqaraveradi. Shu boisdan G.ning oʻzi muskul qisqarishida hal qiluvchi ahamiyatga ega emas. Skelet muskullari uchun G. asosiy energiya manbai hisoblanadi.
Glikoliza jest pierwszym etapem rozkładu glukozy, który służy do pozyskiwania energii dla komórkowych procesów metabolicznych. Glikoliza składa się z fazy wymagającej energii i następującej po niej fazy uwalniania energii. Tłumaczenie na język polski: Fundacja Edukacja dla Przyszłości dzięki wsparciu wolontariuszy. Glikoliza, szlak Embdena-Meyerhofa-Parnasa – ciąg reakcji biochemicznych, podczas których jedna cząsteczka glukozy zostaje przekształcona w dwie cząsteczki pirogronianu.
Glikoliza jest ewolucyjnie starym szlakiem metabolicznym, szeroko rozpowszechnionym wśród organizmów żywych należących do wszystkich trzech domen[1][2]. U eukariotów i wielu prokariotów; przebiega w cytoplazmie podstawowej[3] oraz w plastydach obecnych w komórkach roślin[4][5]. U niektórych protistów[6], takich jak Trypanosoma[7][8] i Leishmania[9] glikoliza zachodzi w wyspecjalizowanych organellach nazywanych glikosomami[10][11].
Najczęstszym typem glikolizy jest schemat Embden-Meyerhof-Parnas, który został odkryty przez Gustava Embdena, Otto Meyerhofa i Jakuba Karola Parnasa.
Sumaryczna reakcja glikolizy jest następująca:
Fosforylacja glukozy[edytuj | edytuj kod]

Struktura krystaliczna heksokinazy 1 z Kluyveromyces lactis[12].



 ATP ADP

Heksokinaza
lub
Glukokinaza



α-D-Glukoza




α-D-Glukozo-6-fosforan

Fosforylacja glukozy i powstanie glukozo-6-fosforanu jest reakcją nieodwracalną katalizowaną przez heksokinazę lub bardziej specyficznie w wątrobie przez glukokinazę[13]. Jako dawca fosforanu potrzebny jest do tej reakcji ATP, reagujący w formie kompleksu Mg-ATP. Jon magnezu Mg2+ lub dwuwartościowy jon innego metalu, na przykład Mn2+, jest konieczny do aktywności heksokinazy. Enzym ten składa się z dwóch części, które podczas połączenia z glukozą zbliżają się do siebie. W wyniku zbliżenia cząsteczka glukozy zostaje zamknięta wewnątrz białka. Indukowane przez glukozę zmiany struktury enzymu powodują, że środowisko wokół cząsteczki cukru staje się mniej polarne. Jedynym elementem wystającym na zewnątrz enzymu jest węgiel C-6 glukozy z grupą hydroksylową. Obniżenie polarności ułatwia przeniesienie grupy fosforanowej z ATP na węgiel C-6. Zamykanie szczeliny indukowane substratem zapobiega reakcji hydrolizy ATP przy użyciu H2O. Reakcja taka zachodziłaby, gdyby miejsce atomu C-6 z grupą hydroksylową mogło być zajęte przez cząsteczkę wody[3].
W komórkach roślinnych występuje wiele rodzajów heksokinaz. Większość z nich to enzymy cytozolowe zdolne do fosforylacji zarówno glukozy, jak i innych heksoz w tym fruktozy i mannozy. W niektórych tkankach wstępujące heksokinaza związana zewnętrzną błoną mitochondrialną, fosforylująca przede wszystkim glukozę[14].

Izomeryzacja[edytuj | edytuj kod]



Struktura izomerazy glukozo-6-fosforanowej z Oryctolagus cuniculus[15].



Izomeraza
glukozo-
fosforanowa






α-D-Glukozo-6-fosforan




α-D-Fruktozo-6-fosforan

Przekształcenie glukozo-6-fosforanu we fruktozo-6-fosforan następuje przy udziale izomerazy glukozo-6-fosforanowej[13], z zastrzeżeniem, że przemianie tej ulega tylko anomer α glukozo-6-fosforanu. Reakcja polega na przekształceniu aldozy, którą jest glukoza z grupą aldehydową przy C-1, do ketozy, którą jest fruktoza z grupą ketonową przy C-2. Pierwszy etap reakcji polega na otworzeniu formy pierścieniowej glukozo-6-fosforanu. Dopiero otwarta forma łańcuchowa ulega izomeryzacji do formy łańcuchowej fruktozo-6-fosforanu. Ostatni etap to przekształcenie otwartej formy łańcuchowej do pięcioczłonowej formy pierścieniowej[3].

Fosforylacja fruktozo-6-fosforanu[edytuj | edytuj kod]



Struktura fosfofruktokinazy 1 (PFK-1).



 ATP ADP

Fosfo-
frukto-
kinaza



β-D-Fruktozo-6-fosforan




β-D-Fruktozo-1,6-bisfosforan

Fosforylację fruktozo-6-fosforanu przy użyciu ATP przeprowadza enzym fosfofruktokinaza I (PFK-1, ATP-fosfofruktokinaza), powstaje fruktozo-1,6-bisfosforanu oraz ADP[13]. Reakcja ta jest nieodwracalna w warunkach fizjologicznych.
W komórkach roślin wyższych i części niższych fosforylacja fruktozo-6-fosforanu może zachodzić przy udziale fosfofruktokinazy lub 1-fosfotransferazy pirofosforan-fruktozo-6-fosforan (PPi-fosfofruktokinaza). Ten drugi enzym przeprowadza reakcję fosforylacji zużywając nie ATP, lecz pirofosforan, a katalizowana reakcja jest odwracalna. W tkankach młodych fruktozo-1,6-bisfosforan powstaje głównie w wyniku reakcji przeprowadzanej przez PPi-fosfofruktokinazę, a w tkankach starszych ATP-fosfofruktokinazę[14].

Rozszczepienie fruktozo-1,6-bisfosforanu[edytuj | edytuj kod]



Struktura aldolazy z wątroby Oryctolagus cuniculus.



Aldolaza








β-D-Fruktozo-1,6-bisfosforan




Fosfo-
dihydroksy-
aceton




D-Aldehyd-
3-fosfo-
glicerynowy

Rozszczepienie fruktozo-1,6-bisfosforanu na dwie fosfotriozy – aldehyd 3-fosfoglicerynowy oraz fosfodihydroksyaceton przeprowadzane jest przez aldolazę[13]. Enzym ten katalizuje reakcję kondensacji aldolowej oraz reakcję odwrotną. Nazwa pochodzi od reakcji kondensacji, jednak w glikolizie dochodzi do rozszczepienia sześciowęglowego cukru[3]. Znane są dwie klasy aldolazy fruktozo-1,6-bisfosforanu (EC 4.1.2.13) o różnym mechanizmie enzymatycznym. Klasa I przeprowadza reakcję poprzez wytworzenie zasady Schiffa pomiędzy grupą karbonylową substratów a grupą aminowa lizyny znajdującej się w centrum aktywnym enzymu. Klasa druga stabilizuje związek pośredni w postaci karboanionu za pomocą dwuwartościowego jonu metalu. Enzymy należące do klasy I nie są jednorodne. U eukariontów to najczęściej homotetramer o masie podjednostki około 40 kDa, a u bakterii są zróżnicowanymi oligomerami o masie podjednostek pomiędzy 27-4- kDa. Aldolazy należące do klasy II występujące u bakterii i eukariontów zwykle są dimerami o masie podjednostek około 40 kDa[16]. U archeanów występują aldolazy zaliczane do klasy I oraz klasy II[17][16]. Różnią się one jednak znacznie od enzymów występujących w pozostałych domenach[16]. W plastydach najczęściej występuje aldolaza klasy I, jednak u niektórych organizmów stwierdzono występowanie w plastydach aldolazy klasy II[18]. Z badań nad aldolazą klasy II u Escheriachia coli wynika, że kluczowe dla funkcji enzymu są reszty aminokwasów Asn-35, Ser,-61 i Lys-325. Ser-61 bierze udział w wiązaniu aldehydu 3-fosfoglicerynowego. Pozostałe dwie reszty mają wpływ na zdolności katalityczne enzymu[19].
Dziedziczny niedobór aldolazy w erytrocytach może wywoływać niedokrwistość hemolityczną.

Przekształcenie fosfodihydroksyacetonu w aldehyd 3-fosfoglicerynowy[edytuj | edytuj kod]



Struktura izomerazy triozofosforanowej.



Izomeraza
triozo-
fosforanowa




Fosfo-
dihydroksy-
aceton




D-Aldehyd-
3-fosfo-
glicerynowy

Przekształcenie fosfodihydroksyacetonu w aldehyd 3-fosfoglicerynowy przez izomerazę triozofosforanową[13]. W stanie równowagi 96% triozofosforanów występuje w postaci fosfodihydroksyacetonu. Mimo to dzięki izomerazie triozofosforanowej (TIM) możliwe jest szybkie wytworzenie aldehydu 3-fosfoglicerynowego niezbędnego do dalszego zachodzenia glikolizy. Katalizowana wewnątrzcząsteczkowa reakcja oksydoredukcyjna polega na przeniesieniu atomu wodoru z C-1 na C-2. W oderwaniu protonu od atomu węgla bierze udział Glu-165, zaś His-95 dostarcza proton grupie karbonylowej C-2 stabilizując jej ładunek ujemny. Produktem pośrednim reakcji jest endiol. Enzym zapobiega rozpadowi endiolowego związku pośredniego na metyloglioksal i ortofosforan, nie pozwalając związkowi endiolowemu na oderwanie się. W utrzymywaniu produktu pośredniego uczestniczy 10 reszt aminokwasowych TIM, zamykających endiol w centrum aktywnym[3].

Utlenianie i fosforylacja aldehydu 3-fosfoglicerynowego[edytuj | edytuj kod]



Struktura dehydrogenazy aldehydu 3-fosfoglicerynowego.



NAD+ NADH
+ Pi + H+

Dehydrogenaza
aldehydu-
3-fosfoglicerynowego



D-Aldehyd 3-fosfoglicerynowy




D-1,3-bisfosfoglicerynian

Przekształcenie aldehydu 3-fosfoglicerynowego w 1,3-bisfosfoglicerynian (1,3-BPG) z użyciem fosforanu nieorganicznego, NAD+ i enzymu dehydrogenazy aldehydu 3-fosfoglicerynowego[13]. Jest to jednoczesna reakcja utleniania i fosforylacji, która może być zmodyfikowana w obecności arsenianu – reaguje on z nieorganicznym fosforanem i tworzy 1-arseno-3-fosfoglicerynian i – zamiast ATP – energię cieplną. Reakcja utleniania jest korzystna termodynamicznie i wykazuje zmianę standardowej energii swobodnej ΔG°' około -50 kJ mol−1. Reakcja ta przebiega w dwóch etapach. W pierwszym z nich aldehyd 3-fosfoglicerynowy łącząć się z grupą tiolową Cys-149 tworzy hemitioacetal. W drugim etapie jon wodorkowy przenoszony jest na NAD+ połączonym z enzymem w pobliżu reszty cysteiny. W oderwaniu protonu od hemiacetalu bierze udział His-176. Druga reakcja wiąże się ze zmianą standardowej energii swobodnej o podobną wartość z przeciwnym znakiem. Sprzężenie obu reakcji jest możliwe dzięki produktowi pośredniemu o charakterze tioestru. Tioestrowy związek pośredni reaguje z ortofosforanem tworząc acylofosforan. W wyniku połączenia z ortofosforanem zostaje uwolniona reszta Cys-149 i powstaje 1,3-bisfosfoglicerynian. Do połączenia może jednak dość tylko gdy powstały w pierwszej reakcji NADH odłączy się od enzymu, a w jego miejsce przyłączy się kolejna cząsteczka NAD+. To właśnie dodatni ładunek dinukleotydu nikotynoamidoadeninowego ułatwia przyłączenie ortofosforanu. Energetyczne sprzężenie obu reakcji jest kluczowe dla pozyskania energii użytecznej metabolicznie w postaci ATP[3].

Synteza ATP 1[edytuj | edytuj kod]



Struktura kinaza fosfoglicerynianowej z drożdży[20].



Kinaza
fosfo-
glicerynianowa
ADP ATP




D-1,3-bisfosfoglicerynian




D-3-fosfoglicerynian

Przeniesienie grupy fosforanowej z 1,3-BPG na ADP i utworzenie ATP (fosforylacja substratowa) oraz 3-fosfoglicerynianu – reakcja katalizowana przez kinazę fosfoglicerynianową[21]. Enzym jest monomerem o masie 45 kDa i wysokim stopniu podobieństwa u różnych gatunków. Enzymy z mięśni konia i drożdży są niemal identyczne[22]. Podobnie jak u innych kinaz substraty przyłączane są do dwóch domen. Pierwsza łączy się z 1,3-bisfosfoglicerynianem a druga z kompleksem Mg-ADP[23][24]. W wyniku zmian konformacyjnych dochodzi do zbliżenia obu substratów i przeniesienia grupy fosforanowej z pozycji C-1 1,3-bisfosfoglicerynianu na ADP[25][26] Reakcja jest odwracalna[25].

Przesunięcie fosforanu[edytuj | edytuj kod]



Struktura fosfogliceromoutazy.



Fosfo-
glicero-
mutaza




D-3-fosfoglicerynian




D-2-fosfoglicerynian

Przekształcenie 3-fosfoglicerynianu w 2-fosfoglicerynian przez fosfogliceromutazę[13]. Przesunięcie grupy fosforanowej odbywa się poprzez przyłączenie do 3-fosfoglicerynianu fosforanu pochodzącego z reszty histydyny enzymu. W efekcie powstaje 2,3-bisfosfoglicerynian (2,3-BPG). Związek ten służy następnie do ufosforylowania reszty histydyny. Na enzym przenoszona jest grupa z pozycji 3. Do działania enzymu potrzebna jest katalityczna ilość 2,3-bisfosfoglicerynianu[3].

Odwodnienie[edytuj | edytuj kod]



Struktura enolazy z drożdży[27].



–H2O
Enolaza




D-2-fosfoglicerynian




Fosfoenolopirogronian

Odwodnienie 2-fosfoglicerynianu i powstanie fosfoenolopirogronianu (PEP) katalizowane jest przez enolazę (EC 4.2.1.11)[13]. U człowieka enzym składa się z dwóch podjednostek. Mogą być to podjednostka α, β lub γ, z których składają się różne izoenzymu zawierające αα, αβ, αγ, ββ lub γγ[28][29]. Masa enzymu mieści w zakresie 82-100 kDa[28][30]. Podjednostki połączone są wiązaniem jonowym pomiędzy Glu-20 pierwszej podjednostki a Arg-414 drugiej podjednostki. Dla aktywności enzymu kluczowe są reszty His-159, Glu-168, Glu-211, Lys-345 i Lys-396[28]. Z centrum aktywnym połączone są dwa jony Mg2+ zapewniające stabilizację substratu oraz związku pośredniego w postaci karboanionu[29][28][31]. Dlatego Aktywność enzymu zależy od obecności jonów magnezu lub manganu[32][33], a hamowana jest w obecności fluorków. Działanie fluorków jest odpowiedzialne za zahamowanie aktywności enolazy bakterii odpowiedzialnych na wywoływanie próchnicy[34].

Synteza ATP 2[edytuj | edytuj kod]



Struktura kinazy pirogronianowej drożdży[35].



ADP ATP

Kinaza pirogronianowa



Fosfoenolopirogronian




Pirogronian

Przeniesienie grupy fosforanowej z PEP na ADP i powstanie ATP oraz pirogronianu katalizowane jest przez kinazę pirogronianową (PK, EC 2.7.1.40)[13]. Podczas przenoszenia grupy fosforanowej z enolofosforanu na ADP dochodzi do przekształcenia formy enolowej pirogronianu do stabilnej formy ketonowej[3]. Ze względu na znaczną utratę energii swobodnej w postaci ciepła, musi być traktowana jako reakcja fizjologicznie nieodwracalna. U większości badanych organizmów PK jest tetramerem zbudowanym z identycznych podjednostek. Enzym jest aktywny w obecności jonów K+ oraz Mg2+ i Mn2+. Różnice w budowie enzymu u różnych organizmów wiążą się ze zróżnicowaniem efektorów allosterycznych. Chociaż podstawowym związkiem regulującym aktywność enzymu jest fruktozo-2,6- fosforan to u wielu bakterii zwiększenie aktywności następuje pod wpływem monofosforanów cukrów takich jak 5-fosforan rybozy[36]. Dziedziczny niedobór kinazy pirogronianowej w erytrocytach może wywoływać niedokrwistość hemolityczną.

Substraty oddechowe[edytuj | edytuj kod]


Podstawowym substratem dla glikolizy jest glukoza, jednak szlak jest podstawową drogi katabolizmu wielu heksoz. Fruktoza w organizmach zwierzęcych pochodzi z rozkładu sacharozy obecnej w pokarmie, a w organizmach roślinnych z rozkładu cukrów zapasowych takich jak sacharoza i inulina jest prowadzana do glikolizy na kilka sposobów[13][14]. W komórkach mięśni i tkance tłuszczowej fruktoza ulega fosforylacji przy udziale heksokinazy. W efekcie powstaje fruktozo-6-fosforan będący związkiem pośrednim w glikolizie. W komórkach wątroby podstawowym enzymem przeprowadzającym fosforylację glukozy jest glukokinaza. Włączenie fruktozy w glikolizę jest możliwe dzięki obecności dodatkowego enzymu, nazywanego fruktokinazą, przekształcającego fruktozę we fruktozo-1-fosforan, który jest rozszczepiany do aldehydu glicerynowego i fosfodihydroksyacetonu przez aldolazę fruktozo-1-fosforanu. Aldehyd glicerynowy ulega fosforylacji przeprowadzanej przez kinazę trioz. Dwa powstałe produkty są już metabolitami uczestniczącymi w glikolizie. Dwie dodatkowe reakcje określane są jako szlak fruktozo-1-fosforanowy[13]. W komórkach roślinnych fruktoza może być fosforylowana przez cytozolową heksokinazę lub fruktokinazę przyłączająca grupę fosforanową z ATP w pozycji 6[14].

Przekształcenie galaktozy do glukozy. 1 – galaktoza, 2 – galaktozo-1-fosforan, 3 – UDP-glukoza, 4 – UDP-galaktoza, 5 – glukozo-1-fosforan, 6 – glukozo-6-fosforan. GK – galaktokinaza, GALT – urydylilotransferaza galaktozo-1-fosforanowa, UEG – 4-epimeraza UDP-glukozy, PGM – fosfoglukomutaza.
Galaktoza, powstająca w organizmach zwierzęcych w wyniku rozkładu laktozy jest fosforylowana do glaktozo-1-fosforanu przez galaktokinazę. Następnie urydylilotransferaza galaktozo-1-fosforanowa przenosi grupę urydynową z UDP-glukozy wytwarzając UDP-galaktozę oraz glukozo-1-fosforan. UDP-galaktoza może być przekształcona do UDP-glukozy przez 4-epimerazę UDP-galaktozy. Opisane reakcje przekształcania galaktozy nazywane są szlakiem wzajemnych przemian galaktoza-glukoza. Powstający w drugiej reakcji szlaku glukozo-1-fosforan może być włączony w glikolizę poprzez przeniesienie grupy fosforanowej z pozycji 6 na pozycję 1 przez fosfoglukomutazę[13].
Dalsze losy pirogronianu[edytuj | edytuj kod]
Powstający w wyniku zachodzenia reakcji glikolizy pirogronian może być przetworzony do różnych produktów anabolicznych. Najczęściej jednak jest katabolizowany poprzez utlenienie do acetylo-CoA, utlenianemu następnie w cyklu Krebsa. W warunkach beztlenowych pirogronian staje się substratem dla fermentacji[37].
Warunki tlenowe[edytuj | edytuj kod]
U prokariontów w warunkach tlenowych pirogronian ulega utlenieniu i dekarboksylacji z udziałem kompleksu dehydrogenazy pirogronianowej[37].
Yüklə 0,68 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin