by the comprehensive care team and should
only be initiated after adequate education and
training. (Level 3) [36,37]
GUIDELINES FOR THE MANAGEMENT OF HEMOPHILIA
14
6. Teaching should focus on general knowledge of
hemophilia; recognition of bleeds and common
complications; first aid measures; dosage calcula-
tion; preparation, storage, and administration of
clotting factor concentrates; aseptic techniques;
performing venipuncture (or access of central
venous catheter); record keeping; proper storage
and disposal of needles/sharps; and handling of
blood spills. A certification program is helpful.
7. Patients or parents should keep bleed records
(paper or electronic) that include date and site
of bleeding, dosage and lot number of product
used, and adverse effects.
8. Infusion technique and bleed records should be
reviewed and monitored at follow-up visits.
9. Home care can be started with young children
with adequate venous access and motivated family
members who have undergone adequate training.
Older children and teenagers can learn self-infu-
sion with family support.
10. An implanted venous access device (Port-A-
Cath) can make injections much easier and may
be required for administering prophylaxis in
younger children. (Level 2) [39,40]
11. However, the risks of surgery, local infection,
and thrombosis associated with such devices
need to be weighed against the advantages of
starting intensive prophylaxis early. (Level 2)
[41,42]
12. The venous access device must be kept scrupu-
lously clean and be adequately flushed after each
administration to prevent clot formation [41].
1.8 Monitoring health status and outcome
1. Regular standardized evaluation at least every
12 months allows longitudinal assessment for
individual patients and can identify new or
potential problems in their early stages so that
treatment plans can be modified. (Level 3)
[14,26,43]
2. Patients should be seen by the multidisciplinary
care team after every severe bleeding episode.
3. The following should be evaluated and education
should be reviewed and reinforced:
■ issues related to venous access
■ issues related to hemostasis (bleed record)
■ use of products for replacement therapy and
the response to them
■ musculoskeletal status: impairment and
function through clinical assessment of joints
and muscles, and radiological evaluation
annually or as indicated (see ‘Musculoskeletal
complications’, on page 55)
■ transfusion-transmitted infections: commonly
HIV, HCV, and HBV, and others if indicated (see
‘Transfusion-transmitted and other infection-
related complications’, on page 61)
■ development of inhibitors (see ‘Inhibitors’, on
page 59)
■ overall psychosocial status
■ dental/oral health
4. Several hemophilia-specific scores are available to
measure joint impairment and function, including
activities and participation. These include:
■ Impairment:
■
Clinical: WFH Physical Examination Score
(aka Gilbert score), Hemophilia Joint
Health Score (HJHS)
■
Radiological: Pettersson score, MRI, and
ultrasound scores
■
Activity: Haemophilia Activities List
(HAL), Paediatric Haemophilia Activities
List (PedHAL), Functional Independence
Score in Hemophilia (FISH)
■ Health-related quality of life: (HaemoQol,
Canadian Hemophilia Outcomes: Kids’ Life
Assessment Tool [CHO-KLAT])
5. For more information on available func-
tional and physical examination scores, see the
WFH’s Compendium of Assessment Tools at:
www.wfh.org/assessment_tools.
GENERAL CARE AND MANAGEMENT OF HEMOPHILIA
15
1.9 Pain management
1. Acute and chronic pain are common in patients
with hemophilia. Adequate assessment of
the cause of pain is essential to guide proper
management.
Pain caused by venous access
1. In general, no pain medication is given.
2. In some children, application of a local anes-
thetic spray or cream at the site of venous access
may be helpful.
Pain caused by joint or muscle bleeding
1. While clotting factor concentrates should be
administered as quickly as possible to stop
bleeding, additional drugs are often needed for
pain control (see Table 1-5: Strategies for pain
management in patients with hemophilia).
2. Other measures include cold packs, immobili-
zation, splints, and crutches [44].
Post-operative pain
1. Intramuscular injection of analgesia should be
avoided.
2. Post-operative pain should be managed in coor-
dination with the anesthesiologist.
3. Initially, intravenous morphine or other narcotic
analgesics can be given, followed by an oral opioid
such as tramadol, codeine, hydrocodone, and
others.
4. When pain is decreasing, paracetamol/acetamin-
ophen may be used.
Pain due to chronic hemophilic arthropathy
1. Chronic hemophilic arthropathy develops in
patients who have not been adequately treated
with clotting factor concentrates for joint
bleeding.
2. Treatment includes functional training, adap-
tations, and adequate analgesia as suggested in
Table 1-5. (Level 2) [15,45]
3. COX-2 inhibitors have a greater role in this
situation. (Level 2) [46,47]
4. Other NSAIDs should be avoided. (Level 2) [48]
5. When pain is disabling, orthopedic surgery
may be indicated. (Level 5) [49]
6. Patients with persisting pain should be referred
to a specialized pain management team.
TABLE 1-5: STRATEGIES FOR PAIN MANAGEMENT IN PATIENTS WITH HEMOPHILIA
1
Paracetamol/acetaminophen
If not effective
2
COX-2 inhibitor (e.g. celecoxib, meloxicam, nimesulide, and others)
OR
Paracetamol/acetaminophen plus codeine (3-4 times/day)
OR
Paracetamol/acetaminophen plus tramadol (3-4 times/day)
3
Morphine: use a slow release product with an escape of a rapid release.
Increase the slow release product if the rapid release product is used more than 4 times/day
Notes:
■ If for any reason medications have been stopped for a period of time, patients who have been taking and tolerating high-dose narcotic
drugs should re-start the drug at a lower dose, or use a less powerful painkiller, under the supervision of a physician.
■ COX-2 inhibitors should be used with caution in patients with hypertension and renal dysfunction.
GUIDELINES FOR THE MANAGEMENT OF HEMOPHILIA
16
1.10 Surgery and invasive procedures
1. Surgery may be required for hemophilia-related
complications or unrelated diseases. The following
issues are of prime importance when performing
surgery on persons with hemophilia.
2. Surgery for patients with hemophilia will require
additional planning and interaction with the
healthcare team than what is required for other
patients.
3. A hemophilia patient requiring surgery is best
managed at or in consultation with a compre-
hensive hemophilia treatment centre. (Level 3)
[50,51]
4. The anesthesiologist should have experience
treating patients with bleeding disorders.
5. Adequate laboratory support is required for
reliable monitoring of clotting factor level and
inhibitor testing.
6. Pre-operative assessment should include inhib-
itor screening and inhibitor assay, particularly
if the recovery of the replaced factor is signif-
icantly less than expected. (Level 4) [52,53]
7. Surgery should be scheduled early in the week
and early in the day for optimal laboratory and
blood bank support, if needed.
8. Adequate quantities of clotting factor concen-
trates should be available for the surgery itself
and to maintain adequate coverage post-opera-
tively for the length of time required for healing
and/or rehabilitation.
9. If clotting factor concentrates are not available,
adequate blood bank support for plasma compo-
nents is needed.
10. The dosage and duration of clotting factor
concentrate coverage depends on the type of
surgery performed (see Tables 7-1 and 7-2).
TABLE 1-6: DEFINITION OF ADEQUACY OF HEMOSTASIS FOR SURGICAL PROCEDURES [64]
Excellent
Intra-operative and post-operative blood loss similar (within 10%) to the non-hemophilic patient.
■ No extra (unplanned) doses of FVIII/FIX/bypassing agents needed AND
■ Blood component transfusions required are similar to non-hemophilic patient
Good
Intra-operative and/or post-operative blood loss slightly increased over expectation for the non-hemophilic patient
(between 10-25% of expected), but the difference is judged by the involved surgeon/anaesthetist to be clinically
insignificant.
■ No extra (unplanned) doses of FVIII/FIX/bypassing agents needed AND
■ Blood component transfusions required are similar to the non-hemophilic patient
Fair
Intra-operative and/or post-operative blood loss increased over expectation (25-50%) for the non-hemophilic
patient and additional treatment is needed.
■ Extra (unplanned) dose of FVIII/FIX/bypassing agents needed OR
■ Increased blood component (within 2 fold) of the anticipated transfusion requirement
Poor/none
Significant intra-operative and/or post-operative blood loss that is substantially increased over expectation (>50%)
for the non-hemophilic patient, requires intervention, and is not explained by a surgical/medical issue other than
hemophilia
■ Unexpected hypotension or unexpected transfer to ICU due to bleeding OR
■ Substantially increased blood component (> 2 fold) of the anticipated transfusion requirement
Notes:
■ Apart from estimates of blood loss during surgery, data on pre- and post-operative hemogloblin levels and the number of packed red
blood cell units transfused may also be used, if relevant, to estimate surgical blood loss.
■ Surgical hemostasis should be assessed by an involved surgeon and/or anaesthetist and records should be completed within 72 hours
following surgery.
■ Surgical procedures may be classified as major or minor. A major surgical procedure is defined as one that requires hemostatic support
for periods exceeding 5 consecutive days.
GENERAL CARE AND MANAGEMENT OF HEMOPHILIA
17
11. Effectiveness of hemostasis for surgical proce-
dures may be judged as per criteria defined by
the Scientific and Standardization Committee
of the International Society on Thrombosis and
Haemostasis (see Table 1-6) [64].
12. Patients with mild hemophilia A, as well as
patients receiving intensive factor replacement
for the first time, are at particular risk of inhib-
itor development and should be re-screened
4–12 weeks post-operatively. (Level 4) [54]
13. Careful monitoring for inhibitors is also advis-
able in patients with non-severe hemophilia A
receiving continous infusion after surgery [55].
14. Infusion of factor concentrates/hemostatic agents
is necessary before invasive diagnostic proce-
dures such as lumbar puncture, arterial blood
gas determination, or any endoscopy with biopsy.
1.11 Dental care and management
1. For persons with hemophilia, good oral hygiene is
essential to prevent periodontal disease and dental
caries, which predispose to gum bleeding [56].
2. Dental examinations should be conducted regu-
larly, starting at the time the baby teeth start to
erupt.
3. Teeth should be brushed twice a day with a
medium texture brush to remove plaque deposits.
4. Dental floss or interdental brushes should be
used wherever possible.
5. Toothpaste containing fluoride should be used
in areas where natural fluoride is not present in
the water supply. Fluoride supplements may also
be prescribed if appropriate.
6. An orthodontic assessment should be consid-
ered for all patients between the ages of 10–14
in order to determine if there are any problems
associated with overcrowding, which can result
in periodontal disease if left untreated.
7. Close liaison between the dental surgeon and
the hemophilia team is essential to provide good
comprehensive dental care.
8. Treatment can be safely carried out under local
anesthesia using the full range of techniques
available to dental surgeons. Infiltration, intra-
papillary, and intra-ligamentary injections are
often done under factor cover (20-40%) though
it may be possible for those with adequate expe-
rience to administer these injections without
it. (Level 4) [57,58]
9. Treatment from the hemophilia unit may be
required before an inferior alveolar nerve block
or lingual infiltration.
10. Dental extraction or surgical procedures carried
out within the oral cavity should be done with
a plan for hemostasis management, in consul-
tation with the hematologist. (Level 3) [51]
11. Tranexamic acid or epsilon aminocaproic acid
(EACA) is often used after dental procedures
to reduce the need for replacement therapy.
(Level 4) [59,60]
12. Oral antibiotics should only be prescribed if clin-
ically necessary.
13. Local hemostatic measures may also be used
whenever possible following a dental extraction.
Typical products include oxidized cellulose and
fibrin glue.
14. Following a tooth extraction, the patient should
be advised to avoid hot food and drinks until
normal feeling has returned. Smoking should
be avoided as this can cause problems with
healing. Regular warm salt water mouthwashes (a
teaspoon of salt in a glass of warm water) should
begin the day after treatment and continue for
five to seven days or until the mouth has healed.
15. Prolonged bleeding and/or difficulty in speaking,
swallowing, or breathing following dental manip-
ulation should be reported to the hematologist/
dental surgeon immediately.
GUIDELINES FOR THE MANAGEMENT OF HEMOPHILIA
18
16. Non-steroidal anti-inflammatory drugs (NSAIDs)
and aspirin must be avoided.
17. An appropriate dose of paracetamol/acetamin-
ophen every six hours for two to three days will
help prevent pain following an extraction.
18. The presence of blood-borne infections should
not affect the availability of dental treatment.
19. Prevention of bleeding at the time of dental proce-
dures in patients with inhibitors to FVIII or FIX
requires careful planning [61].
References
1. Stonebraker JS, Bolton-Maggs PH, Soucie JM,
Walker I, Brooker M. A study of variations in the
reported haemophilia A prevalence around the world.
Haemophilia 2010;16(1):20-32.
2. Ingram GI, Dykes SR, Creese AL, Mellor P, Swan AV,
Kaufert JK, Rizza CR, Spooner RJ, Biggs R. Home
treatment in haemophilia: clinical, social and economic
advantages. Clin Lab Haematol 1979;1(1):13-27.
3. Singleton T, Kruse-Jarres R, Leissinger C. Emergency
department care for patients with haemophilia and von
Willebrand disease. J Emerg Med 2010;39(2):158-65.
4. Castaman G, Mancuso ME, Giacomelli SH, et al.
Molecular and phenotypic determinants of the response
to desmopressin in adult patients with mild hemophilia
A. J Thromb Haemost 2009;7(11):1824-31.
5. Franchini M, Zaffanello M, Lippi G. The use of
desmopressin in mild hemophilia A. Blood Coagul
Fibrinolysis 2010;21(7):615-9.
6. Mannucci PM. Desmopressin (DDAVP) in the
treatment of bleeding disorders: the first twenty years.
Haemophilia 2000;6(Suppl 1):60-67.
7. Berntorp E, Boulyzenkov V, Brettler D, et al. Modern
treatment of haemophilia. Bull WHO 1995;73:691-701.
8. Kasper CK, Mannucci PM, Boulyzenkov V, et al.
Haemophilia in the 1990s: Principles of treatment and
improved access to care. Semin Thrombosis Haemostas
1992;18:1-10.
9. Soucie JM, Nuss R, Evatt B, Abdelhak A, Cowan L, Hill
H, Kolakoski M, Wilber N; Hemophilia Surveillance
System Project Investigators. Mortality among males
with hemophilia: relations with source of medical care.
Blood 2000;96:437–42.
10. Colvin BT, Astermark J, Fischer K, Gringeri A, Lassila R,
Schramm W, Thomas A, Ingerslev J; Inter Disciplinary
Working Group. European principles of haemophilia
care. Haemophilia 2008;14(2):361-74.
11. Evatt BL. The natural evolution of haemophilia care:
developing and sustaining comprehensive care globally.
Haemophilia 2006;12(Suppl 3):13-21.
12. Evatt BL, Black C, Batorova A, Street A, Srivastava A.
Comprehensive care for haemophilia around the world.
Haemophilia 2004;10(Suppl 4):9-13.
13. Canadian Hemophilia Standards Group. Canadian
Comprehensive Care Standards for Hemophilia
and Other Inherited Bleeding Disorders, First
Edition, June 2007. http://www.ahcdc.ca/documents/
CanadianHemophiliaStandardsFirstEdition070612_1.pdf
(Accessed September 4, 2011).
14. de Moerloose P, Fischer K, Lambert T, Windyga J,
Batorova A, Lavigne-Lissalde G, Rocino A, Astermark
J, Hermans C. Recommendations for assessment,
monitoring and follow-up of patients with haemophilia.
Haemophilia 2012 May;18(3):319-25.
15. Gomis M, Querol F, Gallach JE, Gonzalez LM,
Aznar JA. Exercise and sport in the treatment of
haemophilic patients: a systematic review. Haemophilia
2009;15(1):43-54.
16. Iorio A, Fabbriciani G, Marcucci M, Brozzetti M,
Filipponi P. Bone mineral density in haemophilia
patients: a meta-analysis. Thromb Haemost
2010;103(3):596-603.
17. Wallny TA, Scholz DT, Oldenburg J, et al. Osteoporosis
in haemophilia - an underestimated comorbidity?
Haemophilia 2007;13(1):79-84.
18. Seuser A, Boehm P, Kurme A, Schumpe G, Kurnik
K. Orthopaedic issues in sports for persons with
haemophilia. Haemophilia 2007;13(Suppl 2):47–52.
19. Philpott J, Houghton K, Luke A. Physical activity
recommendations for children with specific chronic
health conditions: Juvenile idiopathic arthritis,
hemophilia, asthma and cystic fibrosis. Paediatr Child
Health 2010;15(4):213-25.
20. Querol F, Aznar JA, Haya S, Cid A. Orthoses in
haemophilia. Haemophilia 2002;8(3):407-12.
21. Fischer K, Van der Bom JG, Mauser-Bunschoten EP, et al.
Changes in treatment strategies for severe haemophilia over
the last 3 decades: effects on clotting factor consumption
and arthropathy. Haemophilia 2001; 7: 446-52.
22. Löfqvist T, Nilsson IM, Berntorp E, Pettersson H.
Haemophilia prophylaxis in young patients: a long-term
follow-up. J Intern Med 1997;241:395-400.
23. Nilsson IM, Berntorp E, Löfqvist T, Pettersson
H. Twenty-five years’ experience of prophylactic
treatment in severe haemophilia A and B. J Intern Med
1992;232(1):25-32.
GENERAL CARE AND MANAGEMENT OF HEMOPHILIA
19
24. Aronstam A, Arblaster PG, Rainsford SG, Turk
P, Slattery M, Alderson MR, et al. Prophylaxis in
haemophilia: a double-blind controlled trial. Br J
Haematol 1976;33(1):81-90.
25. Astermark J, Petrini P, Tengborn L, et al. Primary
prophylaxis in severe haemophilia should be started at
an early age but can be individualized. Br J Haematol
1999;105:1109-13.
26. Feldman BM, Pai M, Rivard GE, et al. Tailored
prophylaxis in severe hemophilia A: interim results
from the first 5 years of the Canadian Hemophilia
Primary Prophylaxis Study. J Thromb Haemost 2006;
4(6):1228-36.
27. Fischer K, Van der Bom JG, Mauser-Bunschoten EP,
et al. Effects of postponing prophylactic treatment on
long-term outcome in patients with severe haemophilia.
Blood 2002;99:2337-41.
28. Gringeri A, Lundin B, Mackensen SV, et al; ESPRIT
Study Group. A randomized clinical trial of prophylaxis
in children with hemophilia A (the ESPRIT Study). J
Thromb Haemost 2011;9(4):700-10.
29. Manco-Johnson MJ, Abshire TC, Shapiro AD, et al.
Prophylaxis versus episodic treatment to prevent
joint disease in boys with severe hemophilia. NEJM
2007;357(6):535-44.
30. Petrini P. What factors should influence the dosage and
interval of prophylactic treatment in patients with severe
haemophilia A and B? Haemophilia 2001;7(1):99-102.
31. Fischer K, Van Der Bom JG, Prejs R, et al.
Discontinuation of prophylactic therapy in severe
haemophilia: incidence and effects on outcome.
Haemophilia 2001;7(6):544-50.
32. Hay CR. Prophylaxis in adults with haemophilia.
Haemophilia 2007;13(Suppl 2):10-5.
33. Kavakli K, Aydogdu S, Taner M, et al. Radioisotope
synovectomy with rhenium186 in haemophilic
synovitis for elbows, ankles and shoulders. Haemophilia
2008;14(3):518-23.
34. Luchtman-Jones L, Valentino LA, Manno C;
Recombinant Therapy Workshop Participants.
Considerations in the evaluation of haemophilia patients
for short-term prophylactic therapy: a paediatric and
adult case study. Haemophilia 2006;12(1):82-6.
35. Petrini P, Seuser A. Haemophilia care in adolescents—
compliance and lifestyle issues. Haemophilia 2009; 15
Suppl 1:15-9.
36. Soucie JM, Symons J, Evatt B, Brettler D, Huszti H,
Linden J; Hemophilia Surveillance System Project
Investigators. Home-based factor infusion therapy and
hospitalization for bleeding complications among males
with haemophilia. Haemophilia 2001;7:198-206.
37. Teitel JM, Barnard D, Israels S, Lillicrap D, Poon MC,
Sek J. Home management of haemophilia. Haemophilia
2004;10(2):118-33.
38. Szucs TD, Offner A, Kroner B, et al; European
socioeconomic study group. Resource utilization
in haemophiliacs treated in Europe: results from
the European study on socioeconomic aspects of
haemophilia care. Haemophilia 1998;4(4):498-501.
39. Neunert CE, Miller KL, Journeycake JM, et al.
Implantable central venous access device procedures in
haemophilia patients without an inhibitor: systematic
review of the literature and institutional experience.
Haemophilia 2008;14(2):260-70.
40. Valentino LA, Ewenstein B, Navickis RJ, Wilkes
MM. Central venous access devices in haemophilia.
Haemophilia 2004;10(2):134-46.
41. Ljung R.The risk associated with indwelling catheters
in children with haemophilia. Br J Haematol
2007;138(5):580-6.
42. Ragni MV, Journeycake JM, Brambilla DJ. Tissue
plasminogen activator to prevent central venous
access device infections: a systematic review of central
venous access catheter thrombosis, infection and
thromboprophylaxis. Haemophilia 2008;14(1):30-8.
43. Su Y, Wong WY, Lail A, Donfield SM, Konzal S,
Gomperts E; Hemophilia Growth And Development
Study. Long-term major joint outcomes in young
adults with haemophilia: interim data from the HGDS.
Haemophilia 2007;13(4):387-90.
44. Hermans C, de Moerloose P, Fischer K, Holstein K,
Klamroth R, Lambert T, et al; European Haemophilia
Therapy Standardisation Board. Management of
acute haemarthrosis in haemophilia A without
inhibitors: literature review, European survey and
recommendations. Haemophilia 2011;17(3):383-92.
45. Vallejo L, Pardo A, Gomis M, et al. Influence of
aquatic training on the motor performance of
patients with haemophilic arthropathy. Haemophilia
2010;16(1):155-61.
46. Rattray B, Nugent DJ, Young G. Celecoxib in the
treatment of haemophilic synovitis, target joints,
and pain in adults and children with haemophilia.
Haemophilia 2006;12(5):514-7.
47. Tsoukas C, Eyster ME, Shingo S, et al. Evaluation of
the efficacy and safety of etoricoxib in the treatment of
hemophilic arthropathy. Blood 2006;107(5):1785-90.
48. Eyster ME, Asaad SM, Gold BD, Cohn SE, Goedert JJ;
Second Multicenter Hemophilia Study Group. Upper
gastrointestinal bleeding in haemophiliacs: incidence
and relation to use of non-steroidal anti-inflammatory
drugs. Haemophilia 2007;13(3):279-86.
49. Rodriguez-Merchan EC. Musculoskeletal complications
of hemophilia. HSSJ 2010;6:37-42.
GUIDELINES FOR THE MANAGEMENT OF HEMOPHILIA
20
50. Batorova A, Martinowitz U. Intermittent injections
vs. continuous infusion of factor VIII in haemophilia
patients undergoing major surgery. Br J Haematol
2000;110(3):715-20.
51. Hermans C, Altisent C, Batorova A, et al.; European
Haemophilia Therapy Standardisation Board.
Replacement therapy for invasive procedures in patients
with haemophilia: literature review, European survey
and recommendations. Haemophilia 2009;15(3):639-58.
52. Mathews V, Viswabandya A, Baidya S, George B, Nair
S, Chandy M, Srivastava A. Surgery for hemophilia
in developing countries. Semin Thromb Hemost
2005;31(5):538-43.
53. Teitel JM, Carcao M, Lillicrap D, et al. Orthopaedic
surgery in haemophilia patients with inhibitors:
a practical guide to haemostatic, surgical and
rehabilitative care. Haemophilia 2009;15(1):227-39.
54. Kempton CL, Soucie JM, Miller CH, et al. In non-severe
hemophilia A the risk of inhibitor after intensive factor
treatment is greater in older patients: a case-control
study. J Thromb Haemost 2010;8(10):2224-31.
55. Eckhardt CL, Van der Bom JG, Van der Naald M, Peters
M, Kamphuisen PW and Fijnvandraat K. Surgery and
inhibitor development in hemophilia A: a systematic
review. J Thromb Haemost 2011;9:1948–1958.
56. Friedman M, White B, Dougall AJ. An audit of the
protocol for the management of patients with hereditary
bleeding disorders undergoing dental treatment. J Disab
Oral Health 2009;10(4):151-55.
57. Frachon X, Pommereuil M, Berthier AM, et al.
Management options for dental extraction in
hemophiliacs: a study of 55 extractions (2000-2002).
Oral Surg Oral Med Oral Pathol Oral Radiol Endod
2005;99(3):270-5.
58. Hewson I, Makhmalbaf P, Street A, et al. Dental surgery
with minimal factor support in the inherited bleeding
disorder population at the Alfred Hospital. Haemophilia
2011;17(1):e185-8.
59. Coetzee MJ. The use of topical crushed tranexamic
acid tablets to control bleeding after dental surgery
and from skin ulcers in haemophilia. Haemophilia
2007;13(4):443-4.
60. Franchini M, Rossetti G, Tagliaferri A, et al. Dental
procedures in adult patients with hereditary bleeding
disorders: 10 years experience in three Italian
Hemophilia Centers. Haemophilia 2005;11:504–9.
61. Brewer A. Dental Management of Patients with Inhibitors
to Factor VIII or Factor IX. Treatment of Hemophilia
monograph no 45. Montreal: World Federation of
Hemophilia, 2008.
62. White GC 2nd, Rosendaal F, Aledort LM, Lusher JM,
Rothschild C, Ingerslev J. Definitions in hemophilia.
Recommendation of the scientific subcommittee
on factor VIII and factor IX of the scientific and
standardization committee of the International Society
on Thrombosis and Haemostasis. Thromb Haemost
2001;85(3):560.
63. Aronstam A, Rainsford SG, Painter MJ. Patterns of
bleeding in adolescents with severe haemophilia A. Br
Med J 1979;1(6161):469-70.
64. Definitions in hemophilia. Recommendations of the
scientific subcommittee on factor VIII and factor IX
of the scientific and standardization committee of the
International Society on Thrombosis and Haemostasis.
JTH 2012 (in press).
21
2.1 Carriers
1. Hemophilia is an X-linked disorder that typically
affects males, while females are carriers.
2. Obligate carriers are:
■ daughters of a person with hemophilia
■ mothers of one son with hemophilia and who
have at least one other family member with
hemophilia
■ mothers of one son with hemophilia and who
have a family member who is a known carrier
of the hemophilia gene
■ mothers of two or more sons with hemophilia
3. The expected mean clotting factor level in carriers
of hemophilia is 50% of the levels found in the
healthy population [1,2].
4. Most carriers are asymptomatic.
5. Carriers with clotting factor levels of 40-60% of
normal may have an increased bleeding tendency [3].
6. A few carriers may have clotting factor levels in
the hemophilia range—mostly in the mild cate-
gory—but in rare instances, carriers can be in the
moderate or severe range due to extreme lyoniza-
tion (see Table 1-1).
7. Carriers with clotting factor levels in the hemo-
philia range may be symptomatic with bleeding
manifestations commensurate with their degree
of clotting factor deficiency, particularly during
trauma and surgery [3].
8. Menorrhagia and bleeding after medical interven-
tions are the most common manifestations among
carriers with significantly low factor levels [3].
9. Carriers with low clotting factor levels should be
categorized as having hemophilia of appropriate
severity and managed accordingly.
10. Birth control pills and antifibrinolytic agents are
useful in controlling symptoms of menorrhagia.
11. Levels of factor VIII increase significantly in preg-
nancy. Levels of factor IX, however, do not usually
change significantly [4].
12. Immediate female relatives (mother, sisters, and
Dostları ilə paylaş: |