Hosila ta’rifi. Hosilaning geometrik va fizik ma’nolari. Funksiyaning differensiali. Yig`indi, ayirma, ko‘paytma va bo‘linmani differensiallash. Hosila tushunchasiga olib keluvchi masalalar



Yüklə 0,52 Mb.
səhifə9/9
tarix16.02.2023
ölçüsü0,52 Mb.
#84623
1   2   3   4   5   6   7   8   9
Hosila ta’rifi. Hosilaning geometrik va fizik ma’nolari. Funksiy

Hosila jadvali (Umumiy hol).
u=u(x), v=v(x) funksiyalar differensiallanuvchi funksiyaiar bo’lsin.

1.C'=0; C-o’zgarmas
2. x'=1, x-argument
3. (un)'= nun-1u’.
(n N ,u>0)
4.
5.
6. (au)'= au1na·u';
(a>0; a≠1)
7. (eu)'=euu'



8. (logau)'=
(u>0; a>0; a≠1)
9. (1nu)'=
10. (sinu)'=cosu·u'
11. (cosu)'=-sinu·u'
12. (tgu)'=
13. (ctgu)'=
14. (arcsinu)'=



15. (arccosu)'= -
16. (arctgu)’=
17. (arcctgu)'= - .



Yuqori tartibli hosila.
Agar f(x) funksiya [a,b] kesmada differensiallanuvchi bo’lsa, u holda bu funksiyaning hosilasi f'(x) umuman aytganda yana x ning funksiyasi bo’ladi. Shuning uchun undan x bo’yicha hosila olsak, hosil bo’lgan hosilaga berilgan funksiyadan olingan ikkinchi tartibli hosila deyiladi va y" yoki f "(x) lar bilan belgilanadi. Shunday qilib y=f(x) funksiyaning ikkinchi tartibli hosilasi
y"=f"(x)=(y')'=(f'(x))'.
y"=f "(x) ikkinchi tartibli hosiladan olingan hosilaga y=f(x) funksiyaning uchinchi tartibli hosilasi deyiladi:
y'''=f'"(x)=(f"(x))'
Shu jarayonni n marta davom ettirsak y=f(x) funksiyaning n tartibli hosilasi
y(n)=f(n)(x)=(yn-1)'=(f(n-i)(x))' ko’rinishda bo’ladi.
Yüklə 0,52 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin