“Ilm-fan muammolari yosh tadqiqotchilar talqinida”
mavzusidagi 9-sonli respublika ilmiy konferensiyasi
157
1
1
1
2
2
2
3
3
3
2
c c
i
dd u
dz
d z
dz
d z
dz
d z
=
+
+
,
bu
yerda
1
3
,...,
−
2
c
k
t
u
z
z
, ermit matritsaning xos qiymatlari va
(
)
3
1
2
3
,
,
=
Ў
.
Unitar
akslantirish
2
c
dd z
=
differensial formani o‘zgartirmaydi. Bunga ko‘ra quyidagiga
ega bo‘lamiz:
(
)
( )
(
)
( )
2
2
1
3
2
3
2!
,
2!
c c
c
c c
c
dd u
H
u
dd u
H
u
=
=
,
bu yerda
( )
( )
1
2
1
2
1 2
1 3
2 3
,
,
c
c
H u
H
u
= +
=
+
+
gessian vektori
( )
3
.
c
u
=
Ў
Bundan kelib chiqadi,
( )
( )
2
c
c
u
z
C
D
funksiya uchun har bir
c
o
D
nuqtada
( )
( )
1
2
0
0
0,
0
c
c
H u
H
u
tengsizliklar o‘rinli bo‘lsa, u holda
( )
( )
2
c
c
u
z
C
D
funksiya kuchli 2-subgramonik bo‘ladi.
Endi
3
D
Ў
soha va
( )
( )
2
u x
C
D
funksiya berilgan bo‘lsin. Ushbu
2
k
t
u
x
x
simmetrik matritsasini qaraymiz, ya’ni
2
2
.
k
t
t
k
u
u
x
x
x x
=
Ortonormal almashtirishlar
yordamida bu matritsani diagonali matritsaga o‘tkazish mumkin.
1
2
2
0
0
0
0 ,
0
0
k
t
n
u
x
x
→
bu yerda
( )
j
j
x
=
−
Ў
2
k
t
u
x
x
matritsaning xos qiymatlari. Ushbu
(
)
1
2
3
,
,
=
xos
qiymatlarning
( )
( )
1
1
1
2
3
H u
H
=
= +
+
va
( )
( )
2
2
1 2
1 3
2
3
H u
H
=
=
+
+
Gessian funksiyasi berilgan bo‘lsin.
2-Ta’rif.
Agar
3
D
Ў
sohada
( )
2
( )
u x
C
D
funksiyaning
xos qiymatlari
vektori
( )
( ) ( ) ( )
(
)
1
2
3
,
,
x
x
x
x
=
=
ushbu
( )
(
)
( )
(
)
1
2
0,
0,
H
x
H
x
x
D
(2)
“Ilm-fan muammolari yosh tadqiqotchilar talqinida”
mavzusidagi 9-sonli respublika ilmiy konferensiyasi
158
shartlarni qanoatlantirsa, u holda ( )
u x
ga
D
sohada
2-qavariq funksiya deyiladi
( )
2
u
cv D
−
.
Ishning asosiy natijasi.
Biz
3
x
Ў
fazoni
3
Ј
fazoga,
3
3
3
3
,
x
z
x
y
i
=
+
Ў
Ј
Ў
Ў
(
)
,
z
x
iy
= +
3
Ј
kompleks fazoning haqiqiy 3-o‘lchovli qism fazosi sifatida
joylashtiramiz.
Teorema. Ikki marta silliq
( )
( )
2
3
,
x
u x
C
D
D
Ў
funksiya 2-qavariq funksiya
bo‘lishi
uchun
3
y
y
Ў
parametrga
bog‘liq
bo‘lmagan
holda
( )
(
) ( )
c
c
u
z
u
x
iy
u x
=
+
=
funksiya
c
n
y
D
D
=
Ў
sohada 2-subgarmonik funksiya
bo‘lishi zarur va yetarlidir.
Isbot.
Haqiqatan ham,
( )
c
u
z
funksiya 2-subgarmonik
funksiya bo‘lishi uchun
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
2
2
2
1
1
1
2
1
3
2
2
2
2
2
1
2
2
2
3
2
2
2
3
1
3
2
3
3
c
c
c
c
c
c
c
k
t
c
c
c
u
z
u
z
u
z
z
z
z
z
z
z
u
z
u
z
u
z
u
z
z
z
z
z
z
z
z
z
u
z
u
z
u
z
z
z
z
z
z
z
=
matritsaning
( )
,
1,2,3
j
j
z
j
=
=
Ў
xos
qiymatlari
ushbu
( )
( )
1
2
0,
0
H
H
tengsizliklarni qanoatlantirishi zarur va yetarli edi. Ammo,
( )
(
)
( )
( )
2
2
2
2
1
4
c
c
k
t
k
t
k
t
k
t
u
z
u
x iy
u x
u x
z
z
z
z
z
z
x
x
+
=
=
=
tenglikga ko‘ra,
( )
2
c
k
t
u
z
z
z
va
( )
2
k
t
u x
x
x
matritsalarning xos qiymatlari ustma-
ust tushadi. Shuning uchun,
( )
(
)
2
2
c
n
y
u
cv D
u
sh D
−
Ў
bo‘ladi.
Bundan esa,
ushbu natija kelib chiqadi:
( )
2
2
u
C
cv D
−
I
bo‘lishi uchun
3
3
c
y
D
D
=
Ў
Ј
sohada
(
)
2
0
c
c
dd u
va
(
)
2
0
c
c
dd u
differensial formalarning o‘rinli bo‘lishi
zarur va yetarlidir.
“Ilm-fan muammolari yosh tadqiqotchilar talqinida”
mavzusidagi 9-sonli respublika ilmiy konferensiyasi
159
Foydalanilgan adabiyotlar:
1.
Aleksandrov A.D., Konvexe Polyeder. Akademie-Verlag, Berlin 1958.
2.
Садуллаев А. Теория плюрипотенциала. Применения. Palmarium
Akademic Publishing, 2012. – 316 С.
3.
Абдуллаев Б., Садуллаев А., Теория потенциалов в классе
m
−
cубгармонических функций.// Труды Математического Института имени В.А.
Стеклова, – Москва, 2012. – № 279, C. 166–192.
4.
Blocki Z., Weak solutions to the complex Hessian equation.// Ann.Inst.
Fourier, Grenoble, V.5, 2005. – 55, pp. 1735 – 1756.
5.
Trudinger N.S. and N.Chaudhuri., An Alexsandrov type theorem for k-
convex functions.// (2005), pp. 305-314.
6.
Trudinger N.S. and Wang X. J.,
Hessian measures I,// Topol. Methods
Non linear Anal.19 (1997), pp. 225-239.
7.
Trudinger N.S., Weak solutions of Hessian equations, Comm. Partial
Differential Equations// 22 (1997), pp. 1251-1261.
“Ilm-fan muammolari yosh tadqiqotchilar talqinida”
mavzusidagi 9-sonli respublika ilmiy konferensiyasi
160
PAXTA TERISH APPARATI BARABANI HARAKATINI
MODDELLASHTIRISH VA PARAMETRLARINI OPTIMALLASHTIRISH
Azimov Bahtiyor Magropovich
ToshDTU, texnika fanlari doktori, proffessor
Xurramov Ro‘ziboy Jo‘ra o‘g‘li
ToshDTU, magistranti
Mullaboev Sardor Shokirjon o‘g‘li,
ToshDTU, magistranti
Erkayeva Lola Taxirovna
ToshDTU, magistranti
Annotatsiya:
The article deals with the modeling of movement and
optimization of the parameters of the vertical-spindle
cotton picker for testing
processes. 2 gives the Lazerential equations of vertical-spindle drum motion above
Tourrange’s equations. Optimum control of vertical-spindle drum movement, that is,
by applying Pontryagin’s maximum principle, the problem of fast movement was
posed and research of the necessary conditions of optimal control based on the
criterion of control quality. Joint functions were developed
by controlling the
Hamilton-Pontryagin function. Joint functions gave a control algorithm solution.
Pontryagin’s boundary value problems were formulated on the basis of production
mathematical models. The values of the motion of the object in the transition process
were determined from the Runge-Kutta method of solving boundary value problems,
and as a result, the moment inertia of the vertical-spindle drum, the viscosity and
uniformity coefficients of the drum shaft were determined through the given
resistance moments.
Dostları ilə paylaş: