Insects insects (from Latin insectum)are pancrustacean hexapod invertebrates of the class Insecta



Yüklə 204,5 Kb.
səhifə2/10
tarix06.03.2023
ölçüsü204,5 Kb.
#86847
1   2   3   4   5   6   7   8   9   10
INSECTS

Taxonomy
See also: Category:Insect orders and Category:Insect families
Traditional morphology-based or appearance-based systematics have usually given the Hexapoda the rank of superclass,[36]: 180  and identified four groups within it: insects (Ectognatha), springtails (Collembola), Protura, and Diplura, the latter three being grouped together as the Entognatha on the basis of internalized mouth parts. Supraordinal relationships have undergone numerous changes with the advent of methods based on evolutionary history and genetic data. A recent theory is that the Hexapoda are polyphyletic (where the last common ancestor was not a member of the group), with the entognath classes having separate evolutionary histories from the Insecta.[37] Many of the traditional appearance-based taxa are paraphyletic, so rather than using ranks like subclass, superorder, and infraorder, it has proved better to use monophyletic groupings (in which the last common ancestor is a member of the group). The following represents the best-supported monophyletic groupings for the Insecta.
Insects can be divided into two groups historically treated as subclasses: wingless insects, known as Apterygota, and winged insects, known as Pterygota. The Apterygota consist of the primitively wingless order of the silverfish (Zygentoma). Archaeognatha make up the Monocondylia based on the shape of their mandibles, while Zygentoma and Pterygota are grouped together as Dicondylia. The Zygentoma themselves possibly are not monophyletic, with the family Lepidotrichidae being a sister group to the Dicondylia (Pterygota and the remaining Zygentoma).[38][39]
Paleoptera and Neoptera are the winged orders of insects differentiated by the presence of hardened body parts called sclerites, and in the Neoptera, muscles that allow their wings to fold flatly over the abdomen. Neoptera can further be divided into incomplete metamorphosis-based (Polyneoptera and Paraneoptera) and complete metamorphosis-based groups. It has proved difficult to clarify the relationships between the orders in Polyneoptera because of constant new findings calling for revision of the taxa. For example, the Paraneoptera have turned out to be more closely related to the Endopterygota than to the rest of the Exopterygota. The recent molecular finding that the traditional louse orders Mallophaga and Anoplura are derived from within Psocoptera has led to the new taxon Psocodea.[40] Phasmatodea and Embiidina have been suggested to form the Eukinolabia.[41] Mantodea, Blattodea, and Isoptera are thought to form a monophyletic group termed Dictyoptera.[42]
The Exopterygota likely are paraphyletic in regard to the Endopterygota. The Neuropterida are often lumped or split on the whims of the taxonomist. Fleas are now thought to be closely related to boreid mecopterans.[43] Many questions remain in the basal relationships among endopterygote orders, particularly the Hymenoptera.

Yüklə 204,5 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin