Qo‘shish qoidasi : Agar biror tanlovni m() usulda, tanlovni esa m() usulda amalga oshirish mumkin bo‘lsa va bu yerda tanlovni ixtiyoriy tanlash usuli tanlovni ixtiyoriy tanlash usulidan farq qilsa, u holda « yoki » tanlovni amalga oshirish usullari soni
m( ёки ) = m() +m()
formula bilan topiladi.
Masala: Korxonada 10 erkak va 8 ayol xodim ishlaydi. Shu korxonadan bitta xodimni nеcha xil usulda tanlab olish mumkin?
Ko‘paytirish qoidasi: Agarda biror tanlovni m() usulda, tanlovni m() usulda amalga oshirish mumkin bo‘lsa, u holda « vа » tanlovni (yoki (,) juftlikni) amalga oshirish usullari soni
m( vа ) = m( ) · m( )
formula bilan topiladi.
Masalan, qurilishda 10 suvoqchi va 8 buyoqchi ishlasa, ulardan bir suvoqchi va bir buyoqchidan iborat juftlikni m( vа )=108=80 usulda tanlash mumkin.
Masala: 10 talabadan iborat guruhga ikkita yo‘llanma berildi. Bu yo‘llanmalarni nеcha xil usulda tarqatish mumkin?
Yechish: I yo‘llanmani, esa II yo‘llanmani tarqatishni ifodalasin. Unda m()=10 vа m()=9, chunki bitta talabaga I yo‘llanma berilganda II yo‘llanmaga 9 talaba da’vogar bo‘ladi. Demak, ikkita yo‘llanmani tarqatishlar soni m( vа ) = =109=90 bo‘ladi.
Umumiy holda 1, 2, …., n tanlovlarni mos ravishda m(1), m(2), …., m (n) usullarda amalga oshirish mumkin bo‘lsa,
Bu yerda n! - “en faktorial” deb o‘qiladi va n! = 1 2 3 … n kabi aniqlanadi. Bunda 0! = 1 dеb olinadi. Masalan, 3!=1·2·3=6, 4!= 1·2·3·4=24. Faktoriallarni hisoblashda (n+1)!=n!· (n+1) tenglikdan foydalanish qulay. Masalan, 5!=4!·5=120 bo‘ladi.
Umumiy holda n ta elеmеntdan k tadan olingan kombinatsiyalar soni kabi belgilanadi va uning qiymati quyidagi formula orqali hisoblanishini isbotlash mumkin: