Ko‘p o‘zgaruvchili funksiyaning limiti, uzluksizligi. Funksiyaning xususiy hosilalari Funksiyaning diffrensiali. Yuqori tartibli xususiy hosila va differensiallar. Bir necha o‘zgaruvchi funksiyasining ekstremumlari


Funksiyaning differensiallanuvchanligi



Yüklə 0,71 Mb.
səhifə7/14
tarix28.02.2022
ölçüsü0,71 Mb.
#53220
1   2   3   4   5   6   7   8   9   10   ...   14
Ko‘p o‘zgaruvchili funksiyaning limiti, uzluksizligi. Funksiyani

Funksiyaning differensiallanuvchanligi

funksiya nuqtaning biror atrofda aniqlangan bo‘lsin.

2-ta’rif. Agar funksiyaning nuqtadagi to‘liq orttirmasini

(1)

ko‘rinishda ifodalash mumkin bo‘lsa, u holda funksiya nuqtada differensiallanuvchi deyiladi, bu yerda ga bog‘liq bo‘lmagan sonlar,



da

1-teorema. Agar funksiya nuqtada diffrensiallanuvchi bo‘lsa, u holda u shu nuqtada uzluksiz bo‘ladi.

2-teorema (funksiya differensiallanuvchi bo‘lishining zaruriy sharti). Agar funksiya nuqtada differensiallanuvchi bo‘lsa, u holda u shu nuqtada

va

xususiy hosilalarga ega bo‘ladi.

Shunday qilib, funksiya nuqtada differensiallanuvchi bo‘lishi uchun faqat xususiy hosilalarning mavjud bo‘lishi yetarli bo‘lmaydi. Bunda qo‘shimcha tarzda xususiy hosilalarning uzluksizligi talab qilinsa funksiya nuqtada differensiallanuvchi bo‘ladi. Boshqacha aytganda quyida isbotsiz keltiriladigan teorema o‘rinli bo‘ladi.

3-teorema (funksiya differensiallanuvchi bo‘lishining yetarli sharti). Agar funksiya nuqtaning biror atrofida uzluksiz xususiy hosilalarga ega bo‘lsa, u holda u shu nuqtada differensiallanuvchi bo‘ladi.


Yüklə 0,71 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   ...   14




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin