2-teorema. Ikkita funksiya ko‘paytmasining limiti bu funksiyalar limitlarining ko‘paytmasiga teng, ya’ni
.
1-natija. Funksiya da yagona limitga ega bo‘ladi.
2-natija. O‘zgarmas funksiyaning limiti uning o‘ziga teng , ya’ni
.
3-natija. O‘zgarmas ko‘paytuvchini limit belgisidan tashqarida chiqazish mumkin, ya’ni
4-natija. Funksiyaning natural ko‘rsatkichli darajasining limiti bu funksiya limitining shu tartibli darajasiga teng, ya’ni
,
3-teorema. Ikki funksiya bo‘linmasining limiti bu funksiyalar limitlarining nisbatiga teng, ya’ni
, .
4-teorema. Agar nuqtaning biror atrofidagi barcha nuqtalar uchun tengsizlik bajarilsa va bo‘lsa, u holda bo‘ladi.
Misollar . 1. limitni limitlar haqidagi teoremalarni qo‘llab, topamiz:
va .
U holda
2. limitni topish uchun nuqtaga to‘g‘ri chiziq bo‘ylab yaqinlashamiz. U holda
Yuqorida keltirilgan ikki o‘zgaruvchi funksiyasining limiti unung karrali limiti deyiladi. Ikki o‘zgaruvchining funksiyasi uchun karrali limitdan tashqari takroriy limitlar deb ataluvchi va limitlar ham kiritiladi. Umuman olganda karrali limit har ikki argument bir vaqtda nuqtalarga intilganda takroriy limitlar bilan ustma-ust tushish shart emas. Quyida funksiyaning karrali limitini uning takroriy limitlari bilan almashtirish imkonini beruvch teoremani keltiramiz.
Dostları ilə paylaş: |