Ko‘rinishdagi differensial tenglamalar ko‘rinishdagi differensial tenglamalar



Yüklə 178,88 Kb.
səhifə3/3
tarix18.04.2023
ölçüsü178,88 Kb.
#99819
1   2   3
Ko‘rinishdagi differensial tenglamalar ko‘rinishdagi differensia

Eyler formulasini tatbiq etsak,

tengliklar hosil bo‘ladi. Ma’lumki, bu funksiyalarning chiziqli kombinatsiyasi ham bir jinsli tenglamaning yechimlari bo‘ladi. Shuning uchun

funksiyalar ham (3) tenglamaning yechimlari bo‘ladi. Bu yechimlar chiziqli bog‘lanmagan, chunki ulardan tuzilgan Vronskiy determinanti no‘ldan farqli (tekshirib ko‘ring).
Demak,
(8)
(3) tenglamaning umumiy yechimi bo‘ladi.
4-misol. differensial tenglamaning umumiy yechimini toping.
Yechish. Berilgan tenglamaga mos xarakteristik tenglamaning ildizlari:

bo‘ladi. Bu ildizlar kompleks qo‘shma bo‘lib uchinchi holga mos keladi. ekanligini hisobga olib (8) formulaga asosan umumiy yechim,

bo‘ladi.
Endi ikkinchi tartibli o‘zgarmas koeffitsientli bir jinsli tenglama uchun berilgan boshlang‘ich shartni qanoatlantiruvchi xususiy yechimni topishni, ya’ni Koshi masalasini qaraymiz.
5-misol. differensial tenglamaning bo‘lganda bo‘ladigan xususiy yechimini toping.
Yechish. Berilgan tenglama ikkinchi tartibli o‘zgarmas koeffitsientli, bir jinsli, chiziqli tenglamadir. Unga mos xarakteristik tenglama

bo‘lib, uning ildizlari bo‘ladi. Demak, tenglamaning umumiy yechimi

bo‘ladi. Oxirgi tenglikdan hosila olsak,

bo‘lib , bo‘lganda boshlang‘ich shartlarga asosan,

tenglamalar sistemasi hosil bo‘ladi. Oxirgi tenglamalar sistemasidan larni aniqlaymiz. Shunday qilib, izlanayotgan xususiy yechim

bo‘ladi.
Yüklə 178,88 Kb.

Dostları ilə paylaş:
1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin