Laplasning lokal va integral teoremalariga doir misollar yechish



Yüklə 339,5 Kb.
səhifə1/2
tarix20.09.2023
ölçüsü339,5 Kb.
#146068
  1   2
8. Laplasning lokal va integral teoremalariga doir misollar yechish


Laplasning lokal va integral teoremalariga doir misollar yechish


da ehtimol uchun asimptotik formula topish zaruriyati tug`iladi.
Quyidagi belgilashlarni kiritamiz:
.
Teorema (Muavr-Laplasning lokal teoremasi). Agar ta bog`lanmagan tajribalarning har biror hodisaning ro`y berish ehtimoli ( ) bo`lsa u holda bo`ladigan hamma va lar uchun
(1)
o`rinli bo`ladi. Bu yerda .
Bu teoremani Muavr 1730 yilda bo`lgan hol uchun, so`ngra Laplas ixtiyoriy uchun isbotlagan.
Isbot. Teorema isbotida bizga matematik analiz fanidan ma`lum bo`lgan Stirling formulasidan foydalanamiz.
, .
bo`lgani uchun
, (2)
Shunga o`xshash dan
, (3)
tenglik o`rinli bo`ladi.
(2) va (3) tengliklardan ko`rinadiki, da va lar ham cheksizlikka intiladi.
Bernulli formulasiga asosan:
.
Stirling formulasiga asosan:

(4)
bu yerda va . (2) va (3) larga asosan
(5)
Bundan ko`rinadiki (6).
Belgilash kiritamiz:

deb belgilaymiz.
U holda (2) va (3) ga asosan:

. (7)
yetarlicha katta bo`lganda va larni yetarlicha kichik qilish mumkin? Shuning uchun va larni darajali qatorga yoyish mumkin.


(8)


(9)
(8) va (9) larga asosan (7) ni quyidagicha yozish mumkin:






bo`lgani uchun da
(10)
(2) va (3) larni hisobga olsak,
, (11)
va da
(12)
(6), (10), (11), (12) larni hisobga olsak (4) dan teoremaning isboti kelib chiqadi.
Masalalar yechishda qulaylik tug`dirish uchun

funksiya uchun jadval tuzilgan.
Bu jadval faqat argumentning manfiy bo`lmagan qiymatlari uchun tuzilgan.
juft bo`lgani uchun ning manfiy qiymatlari uchun ham shu jadvaldan foydalanish mumkin.
Masalalar yechiashda quyidagi taqribiy formuladan foydalaniladi:
(13)
Endi oldingi ma`ruza oxirida keltirilgan masalani (13) formuladan foydalanib yechamiz.
Masala shartiga ko`ra: , , ,
.
; .
Demak, .
Muavr-Laplasning lokal teoremasidan foydalanmasdan o`tkazilgan aniq hisolashlar ekanligini ko`rsatadi.
Taqribiy va aniq qiymat orasidagi farq ni tashkil qiladi. Bu xatolikni inobatga olmaslik mumkin.
Faraz qilaylik, bizdan ta bog`lanmagan tajribalarda biror hodisasining kami bilan ko`pi bilan marta ro`y berish ehtimolligini ni topish talab qilinsin.
Bernulli formulasiga asosan:
(14)
Agar lar yetarlicha katta bo`lsa, (14) ifodaning qiymatini hisoblash texnik qiyinchiliklarga olib keladi.
Shuning uchun ham ehtimollik uchun asimptotik formula izlash zaruriyati tug`iladi.
Teorema (Muavr-Laplasning integral teoremasi). Agar ta bog`lanmagan tajribalarning har birida biror hodisaning ro`y berish ehtimoli ( ) bo`lsa, da

munosabat va larda ( ) nisabatan tekis bajariladi.
Bu yerda
, , .
Isbot. Muavr-Laplasning lokal teoremasiga asosan va lar chekli bo`lganda

bu yerda
, .
Quyidagi ayirmani qaraymiz:

Bunga asosan

va da
(15)
Endi ni baholaymiz.
.
Bunda
da (16)
ekanligi kelib chiqadi. (15) va (16) dan teoremaning isbotiga ega bo`lamiz.
Muavr-Laplasning integral teoremasidan foydalanib maslalalar yechishda

funksiyaning qiymatini hisoblashga to`g`ri keladi.
funksiya qiymatlari uchun jadval tuzilgan.
Jadvalda funksiyaning nol va musbat larga mos qiymatlari keltirilgan.
da funksiyaning toqligidan foydalanib, jadvaldan bo`lgan holda ham foydalanish mumkin.
Jadvalda ning kesmadagi qiymatlari berilgan, agar bo`lsa, u holda deb olinadi.
funksiya orqali ni quyidagicha ifodalash mumkin:

Endi quyidagi masalani yechamiz:
Masala. Korxonada ishlab chiqariladigan har bir maxsulotning yaroqsiz bo`lish ehtimoli . 10000 ta ishlab chiqarilgan maxsulot orasida yaroqsizlari soni 70 tadan oshmaslik ehtimolini toping.
; ; ; ; ;
; ; ; ; .
funksiya jadvalidan ;
.
Faraz qilaylik Muavr-Laplasning integral teoremasidagi barcha shartlar bajarilgan bo`lsin. Biz nisbiy chastotaning o`zgarmas ehtimoldan chetlanishning absolyut qiymati bo`yicha oldindan berilgan sondan katta bo`lmaslik ehtimolini topish masalasini qaraymiz, ya`ni tengsizlikni bajarilish baholaymiz.

Muavr-Laplas integral teoremasiga asosan

Shunday qilib
(17)
(17) ning ikkala tomonidan da limitga o`tsak,
.
.
Bu munosabatga Bernulli sxemasi uchun katta sonlar qonuni yoki Bernulli teoremasi deyiladi.
Masala. Tajriba tanga tashlashdan iborat bo`lsin. Tangani 100 marta tashlaganda raqamli tomon tushish hodisasining nisbiy chastotasi ning ehtimoldan absolyut qiymat bo`yicha farqi dan oshmaslik ehtimolini baholang.
Yechish. Masala shartiga ko`ra , , , .
(17) formulaga asosan
,
chunki .

Yüklə 339,5 Kb.

Dostları ilə paylaş:
  1   2




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin