Lim. Amaliy hisob qismi regression va korrelyatsion tahlil



Yüklə 1,1 Mb.
səhifə4/11
tarix22.12.2023
ölçüsü1,1 Mb.
#189580
1   2   3   4   5   6   7   8   9   10   11
kurs loyha print 6 variant

x^4

x^2*y

1

42,65437

10,98937

1819,395634

468,7448686

77605,18208

3310200,472

19994,02

2

43,22397

10,61809

1868,311919

458,9561706

80755,8656

3490589,426

19837,91

3

43,63856

10,1182

1904,323611

441,5434267

83101,93341

3626448,414

19268,32

4

44,25149

10,45705

1958,193965

462,7400016

86652,99179

3834523,606

20476,93

5

44,73101

11,01645

2000,862925

492,7770263

89500,61209

4003452,444

22042,41

6

45,19059

11,20233

2042,189615

506,2399902

92287,75793

4170538,426

22877,28

7

45,69124

11,75259

2087,689486

536,9901991

95389,12306

4358447,392

24535,75

8

46,21107

12,07292

2135,463005

557,9026442

98682,03074

4560202,246

25781,28

9

46,52267

11,65261

2164,358613

542,1105707

100691,7366

4684448,206

25220,43

10

47,24607

11,82661

2232,19112

558,7607681

105462,2577

4982677,198

26399,25

11

48,00033

11,5493

2304,03208

554,3701429

110594,3098

5308563,825

26609,95

12

48,38318

12,00935

2340,932238

581,0506899

113261,749

5479963,742

28113,08

13

48,55079

15,49092

2357,179614

752,0964088

114442,9422

5556295,733

36514,88

 Summa

594,2953

150,7558

27215,12383

6914,282908

1248428,492

57366351,13

317671,5

 Urtacha

45,71503

11,5966

2093,471063

531,867916

96032,96092

4412796,241

24436,27

Olingan natijalar asosida sistema quyidagi ko’rinishda bo’ladi:



Bu sistemani yechib quyidagi ildizlarga ega bo’lamiz:

Demak, X1 va Y2 o’rtasidagi chiziqli regression bo’gliqlik funksiyasi quyidagi ko’rinishda bo’ladi:
y = 0,4793x - 10,315
3.2.2. Parabolik empirik bog’liqlik qurish (parabolik regressiya funksiyasi koeffisiyentlarini aniqlash)

Olingan natijalar asosida sistema quyidagi ko’rinishda bo’ladi:



Bu sistemani yechib quyidagi ildizlarga ega bo’lamiz:

Demak, X1 va Y2 uchun parabolik regression bo’gliqlik funksiyasi quyidagi ko’rinishda bo’ladi:

y = 0,1012x2 - 8,7725x + 200,83


3.3. X2 – kirish omili va Y1 – chiqish o’rtasidagi empirik bog’liqlik ifodasini topish
3.3.1. Chiziqli empirik bog’liqlik qurish (chiziqli regressiya funksiyasi koeffisiyentlarini aniqlash)
Hisoblashlarni yuqoridagi X1 va Y1 uchun bajarilgani kabi olib boramiz.
X2 va Y1 uchun quyidagi jadvalni tuzamiz (2.4-jadval):
2.4-jadval.



x2

y1

x2^2

x2^3

x2^4

x2*y1

x2^2*y

1

2,718315

33,39134

7,389237

20,08628

54,60083

90,76818

246,7365

2

3,006297

33,31545

9,037824

27,17039

81,68227

100,1562

301,0992

3

3,055288

33,54803

9,334784

28,52045

87,13819

102,4989

313,1636

4

2,624334

33,79333

6,887131

18,07413

47,43257

88,68498

232,739

5

3,024335

33,84084

9,146601

27,66238

83,66031

102,346

309,5286

6

2,744328

33,95041

7,531335

20,66845

56,72101

93,17107

255,692

7

2,544345

34,05498

6,473693

16,47131

41,9087

86,64762

220,4615

8

2,763334

34,09657

7,636016

21,10087

58,30875

94,22022

260,362

9

2,924312

34,19845

8,551602

25,00756

73,1299

100,0069

292,4515

10

2,715344

34,30496

7,373091

20,02048

54,36248

93,14976

252,9336

11

2,974394

34,65998

8,84702

26,31452

78,26976

103,0924

306,6375

12

2,559344

34,73706

6,55024

16,76432

42,90565

88,90406

227,5361

13

2,744336

35,17995

7,531382

20,66864

56,72171

96,54561

264,9536

summa

36,39831

443,0713

102,29

288,5298

816,8421

1240,192

3484,295

urtachasi

2,79987

34,08241

7,868458

22,1946

62,83401

95,39938

268,0227

Olingan natijalar asosida sistema quyidagi ko’rinishda bo’ladi:



Bu sistemani yechib quyidagi ildizlarga ega bo’lamiz:

Demak, X2 va Y1 o’rtasidagi chiziqli regression bo’gliqlik funksiyasi quyidagi ko’rinishda bo’ladi:

y = -0,9227x + 36,666


3.3.2. Parabolik empirik bog’liqlik qurish (parabolik regressiya funksiyasi koeffisiyentlarini aniqlash)

Olingan natijalar asosida sistema quyidagi ko’rinishda bo’ladi:



Bu sistemani yechib quyidagi ildizlarga ega bo’lamiz:

Demak, X2 va Y1 uchun parabolik regression bo’gliqlik funksiyasi quyidagi ko’rinishda bo’ladi:

Y^ = -3,7416x2 + 20,093x + 7,2651




3.4. X2 – kirish omili va Y2 – chiqish o’rtasidagi empirik bog’liqlik ifodasini topish
3.4.1. Chiziqli empirik bog’liqlik qurish (chiziqli regressiya funksiyasi koeffisiyentlarini aniqlash)
Hisoblashlarni yuqoridagi X1 va Y1 uchun bajarilgani kabi olib boramiz.
X2 va Y2 uchun quyidagi jadvalni tuzamiz (2.5-jadval):





x2

y2

x2^2

x2^3

x2^4

x2*y2

x2^2*y2

1

2,851059

10,98937

8,128536

23,17493

66,07309

31,33135

89,327518

2

2,771003

10,61809

7,678456

21,27702

58,95868

29,42276

81,530555

3

2,800997

10,1182

7,845583

21,97545

61,55317

28,34103

79,383137

4

2,709664

10,45705

7,342277

19,8951

53,90903

28,33509

76,778554

5

2,730717

11,01645

7,456817

20,36246

55,60411

30,08282

82,147668

6

2,837793

11,20233

8,053071

22,85295

64,85195

31,7899

90,213165

7

2,811408

11,75259

7,904014

22,22141

62,47344

33,04131

92,8926

8

2,747284

12,07292

7,54757

20,73532

56,96581

33,16775

91,121223

9

2,782971

11,65261

7,744929

21,55392

59,98393

32,42888

90,248651

10

2,87681

11,82661

8,276034

23,80857

68,49274

34,0229

97,877412

11

2,624254

11,5493

6,88671

18,07248

47,42678

30,30829

79,536668

12

2,809685

12,00935

7,894333

22,18059

62,32049

33,7425

94,805825

13

2,784294

15,49092

7,752292

21,58466

60,09803

43,13127

120,09013

summa

36,13794

150,7558

100,5106

279,6949

778,7112

419,1459

1165,9531

urtacha

2,779841

11,5966

7,731586

21,51499

59,90086

32,24199

89,6887

2.5-jadval.
Olingan natijalar asosida sistema quyidagi ko’rinishda bo’ladi:

Bu sistemani yechib quyidagi ildizlarga ega bo’lamiz:

Demak, X2 va Y2 o’rtasidagi chiziqli regression bo’gliqlik funksiyasi quyidagi ko’rinishda bo’ladi:

Y^ = 1,2984x + 7,9872



Yüklə 1,1 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin