Mantiqiy funksiyalar uchun qiymatlar jadvali Funksiyalar soni
A
B
C
A&B
⌐ (A&B)
A\/B
A\/B~C
α(A, B, C)= ⌐(A&B)→(A\/B~C)
0
0
0
0
1
0
1
1
0
0
1
0
1
0
0
0
0
1
0
0
1
1
0
0
0
1
1
0
1
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
1
1
1
1
1
1
0
1
0
1
0
1
1
1
1
1
0
1
1
1
11.3. Rostlik jadvali bo‘yicha mantiq funksiyasi ko‘rinishini tiklash.
A
B
C
α=α(A,B,C)
0
0
0
0
0
0
1
1
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
1
1
1
0
0
1
1
1
1
Ushbu masala yechimini aniq misolda ko‘rib chiqamiz. Aytaylik A, B, C ouvchilarga bo‘liq bo‘lgan α=α(A,B,C) formula berilgan bo‘lsin. Tushunarliki ush bu rostlik jadvaliga ega bo‘lgan cheksiz ko‘p teng kuchli formulalar mavjud. Ulardan ikkitasini topishni ko‘rib chiqamiz.
1) Rostlik jadvalida α=α(A,B,C) formula 1 ga teng bo‘lgan qator nomerlarini yozib chiqamiz.
2-qator
6-qator
8-qator
Har bir qator mantiqiy imkoniyatlaridagina 1 ga teng bo‘lgan, boshqa imkoniyatlarda esa 0 ga teng bo‘lgan formulalarni yozib chiqamiz. Buning uchun 1 ga teng
bo‘lgan qatordagi fikr o‘zgaruvchilari qiymatlarini 1(rost) ga aylantirib, fikr o‘zgaruvchilari kon’yunksiyasini olish lozim.
2-qator uchun: ⌐A&⌐B&C; 6-qator uchun: A&⌐B&C; 8-qator uchun: A&B&C bo‘ladi. Agar qatorlar bo‘yicha olingan formulalar diz’yunksiyasi olinsa hosil bo‘lgan formula qidirilayotgan formula bo‘ladi:
α=α(A,B,C)= ⌐A&⌐B&C\/ A&⌐B&C\/A&B&C (1)
2) Rostlik jadvalida α=α(A,B,C) formula 0 ga teng bo‘lgan qator nomerlarini yozib chiqamiz.
1-qator
3-qator
4-qator
5-qator
7-qator
Har bir qator mantiqiy imkoniyatlaridagina 0 ga teng bo‘lgan, boshqa imkoniyatlarda esa 1 ga teng bo‘lgan formulalarni yozib chiqamiz. Buning uchun 0 ga teng bo‘lgan qatordagi fikr o‘zgaruvchilari qiymatlarini 0(yolg‘on) ga aylantirib, fikr o‘zgaruvchilari diz’yumksiyasini olish lozim.
Shunda 1-qator uchun: A\/B\/C; 3-qator uchun: A\/B\/ ⌐C; 4-qator uchun: A\/⌐B\/⌐C; 5-qator uchun: ⌐A\/B\/C; 7-qator uchun: ⌐A\/⌐B\/C bo‘ladi.
Agar qatorlar bo‘yicha olingan formulalar kon’yunksiyasi olinsa, hosil bo‘lgan formula qidirilayotgan formula bo‘ladi.
α=α(A,B,C)=( A\/B\/C)&( A\/B\/ ⌐C)&( A\/⌐B\/⌐C)&( ⌐A\/B\/C)&( ⌐A\/⌐B\/C) (2) (1) va (2) formulalar teng kuchli, chunki ularning rostlik jadvallari bir xil bo‘ladi. Shuning uchun ham ulardan qaysi birini tuzish kamroq ish talab qilsa shunisini tuzganimiz ma‘qul. Yuqoridagi misol ixtiyoriy umumiy hol uchun o‘rinli, ya’ni ixtiyoriy rostlik jadvali bo‘yicha formula ko‘rinishini shu prinsipda qurish mumkin.