Математik маnтiq аsoslari ikki o‘zgaruvchili Bul funksiyalari quyidagicha rostlik jadvali bilan beriladi



Yüklə 0,53 Mb.
səhifə4/7
tarix28.12.2023
ölçüsü0,53 Mb.
#200893
1   2   3   4   5   6   7
1701501692 (2)

4. “Va-yo‘q” mantiqiy elementi
“ Va-yo‘q” mantiqiy elementi va-yo‘q mantiqiy funksiyani yoki inventorlangan “Va” ni amalga oshiradi. Ushbu mantiqiy amal quyidagicha belgilanadi:
B u belgini quyidagicha yoyib ham yozish mumkin.
Rostlik jadvali esa quyidagi ko‘rinishni oladi:

5. “Yoki-yo‘q” mantiqiy elementi
“ Yoki-yo‘q” mantiqiy elementi yoki-yo‘q mantiqiy funktsiyani yoki inventorlangan “yoki” ni amalga oshiradi. Quyidagicha:
Yoki

kabi belgilanadi. Rostlik jadvali esa quyidagi ko‘rinishni oladi:



Shunga o‘xshash yana bir qancha standart belgilashlar kiritiladi


Ikkitadan ortiq sondagi kirishga ega bo‘lgan mantiqiy elementlar uchun ham mos ravishda quyidagicha belgilashlar ishlatiladi:



2.2. Ikkilik mantiqiy elementlarining qo‘llanilishi
Mantiqiy elementlarning shartli belgilanishi, rostlik jadvallari va Bul ifodalari elektrotexnika sohasidagi real masalalarni yechishda juda qo‘l keladi.
Har qanday fikrlar algebrasi formulasini ¬, &, V amallari orqali yozish mumkin, buning uchun →, ~ dan qutilish qoidalarini qo‘llash kifoya. ¬, & va V amallaridan iborat formulaga mos paralel va ketma-ket ulash qoidalariga asosan sxema tuzish mumkin. Bundan kelib chiqadiki har qanday sxemaga parallel va ketma-ket ulanish qoidalariga ko‘ra mos formula yozish mumkin. Boshlang‘ich ko‘rinishdagi formulani esa mantiq qonunlari bo‘yicha soddalashtirib, soddalashgan formulaga mos yana qaytatdan sxema tuzish mumkin. Hosil bo‘lgan sxema ham ixcham, ham arzon bo‘lib, boshlang‘ich sxema bajargan ishni to‘laligicha bajarib beradi. Amaliyotda ushbu qoidadan murakkab ko‘rinishdagi mantiqiy sxemalarni soddalashtirish uchun foydalaniladi.
Masalan: F(x,y,z)=(xy)(xy)(yz) formulaga mos mantiqiy sxema quyidagicha bo‘ladi:
Ushbu formulani mantiq qonunlari bo‘yicha soddalashtirsak:
F(x,y,z)=(xy)(xy)(xy)=x&(yy)(xy)= =x (xy)=
= (xx)&(xy)= xy=(x&y)
u holda yuqorida keltirilgan sxema ishini bajarib beradigan quyidagicha soddalashgan sxemaga ega bo‘lamiz:
Quyida keltirilgan misollar uchun rele-kontakt sxemasi keltirilsin, sxema mantiq qonunlari asosida soddalashtirilsin:

4.1

F(x,y,z)=x&(x&yz)&(xz)

4.2

F(x,y,z)=(xy)&(yx&z)

4.3

F(x,y,z)=x&(yx)&(xz)

4.4

F(x,y,z)=(x&y)→(z&x)

4.5

F(x,y,z)=(x&yz)&x&z

4.6

F(x,y,z)= (xzx&y)&(z→y)

4.7

F(x,y,z)=(xyzxy&z)&xy

4.8

F(x,y,z)=(x&y&zx&z)&y

4.9

F(x,y,z)=(xy)((yz)→(xxz))

4.10

F(x,y,z)=(xy)((yz)→(xz))

4.11

F(x,y,z)=x((yz)(x→z))

4.12

F(x,y,z)=(((xy)z)y)&(y→z)

4.13

F(x,y,z)=((xy)(yz))(x(y→z))

4.14

F(x,y,z)=(xy→z)((xy)z)

4.15

F(x,y,z)=(xy)(xxyyz(xyz))

4.16

F(x,y,z)=(xyz)(xyx(yz)y&z)x

4.17

F((x,y,z)=((xy)→(xy))&((x→y)→(xy))

4.18

F(x,y,z)=((xy)(xz))(xyz)

4.19

F(x,y,z)=((xy)z→((xz)y))((xy)z)

4.20

F(x,y,z)=((xy)(xy))→(z→y)

4.21

F(x,y,z)=(x→y)(((x→z)y)z)

4.22

F(x,y,z)= ((xy)→((xy)y))z

4.23

F(x,y,z)= ((xy)→(xz→y))→xz

4.24

F(x,y,z)=((xy)z)x)y

4.25

F(x,y,z)=((x→y)(x→yz))(xy)

4.26

F(x,y,z)=(x→y)((y→z)→xy)

4.27

F(x,y,z)=(xy)(x→(y→z))

4.28

F(x,y,z)=x→((y→z)→yz)

4.29

F(x,y,z)=(x(y→z))(xy)

4.30

F(x,y,z)=(xy)(xz))(xyz)


Yüklə 0,53 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin