To‘plamlar nazariyasining paydo bo‘lishi.
Matematikada, shu jumladan, diskret matematika, kombinatorika va graflar nazariyasida ham, turli to‘plamlar bilan ish ko'rishga to'g'ri keladi. Masalan, kutubxonadagi barcha kitoblar to'plami, to'g'ri burchakli uchburchaklar to'plami, suvda hayot kechiruvchi tirik organizmlar to'plami, natural sonlar to'plami, koinotdagi yulduzlar to'plami, to'g'ri chiziqda yotuvchi nuqtalar to'plami va hokazo.
To'plamlar nazariyasiga fan sifatida XIX asming oxirida matematikani standartlashtirish bo'yicha o'z dasturini taklif etgan Kantor1 tomonidan asos solingan deb hisoblansada, to'plamlar bilan Kantordan oldinroq Bolsano shug'ullangan. Kantor fikricha, istalgan matematik obyekt (shu jumladan, to'plamning o'zi ham) qandaydir to'plamga tegishli bo'lishi shart. Berilgan xossaga ega bo'lgan barcha obyektlar majmuasi uchun umumiy nomni Kantor to'plamdeb tushungan edi. 1- ta ’rif. To'plamni tashkil etuvchilar shu to'plamning elementlari deb ataladi.
To'plamlar nazariyasida to'plamning elementlari bir-biridan farqli deb hisoblanadi, ya’ni muayyan bir to'plamning elementlari takrorlanmaydi.
To'plamni tashkil etuvchi elementlar soni chekli yoki cheksiz bo'lishi mumkin. Birinchi holda chekli to‘plamga, ikkinchi holda esa, cheksiz to'plamga ega bo'lamiz. To'plamlami belgilashda, odatda, lotin yoki grek alifbosining bosh harflari, uning elementlari uchun esa alifboning kichik harflari qo'llaniladi. To'plamni tashkil etuvchi elementlar figurali qavslar orasiga olinib ifodalanishi mumkin. Masalan, A to'plamning a ,b ,c,d ,...,z elementlardan tuzilganligini A = {a,b,c,d,...,z} ko'rinishda yozish mumkin. Ko'pincha (masalan, cheksiz to'plam yoki to'plamning elementlari juda ko'p bo'lgan holda) to'plamni belgilashda figurali qavslar orasida, awalo, to'plamni tashkil etuvchi elementningumumiy belgisi yozilib, undan so'ng “I” yoki (ba’zan “/”) belgisi qo'yiladi, keyin esa, ifodalanayotgan to'plamning barcha elementlariga xos shartlar yoziladi.