Mavzu: Turli sanoq sistemalarida amallarni bajarish



Yüklə 415,86 Kb.
səhifə8/13
tarix24.05.2023
ölçüsü415,86 Kb.
#121095
1   ...   5   6   7   8   9   10   11   12   13
elementar

Tenglama — ikki yoki undan oshiq ifodalarning oʻzaro bogʻlanganini koʻrsatuvchi matematik tenglik. Tenglamalardan matematikaning barcha nazariy va amaliy sohalarida hamda fizika, biologiya va boshqa ijtimoiy fanlarda foydalaniladi.
Tenglik belgisining birinchi marta ishlatilgani (14x+15=71).
Tenglamada bir yoki undan koʻp nomaʼlum qiymat boʻladi va ular oʻzgaruvchilar yoki nomaʼlumlar deb ataladi. Nomaʼlumlar odatda harflar yoki boshqa belgilar bilan ifodalanadi.
Tenglamalar ulardagi oʻzgaruvchilar soniga qarab nomlanadi. Masalan, bir oʻzgaruvchili tenglama, ikki oʻzgaruvchili tenglama va hokazo.
Tenglamada ifodalar odatda tenglik belgisining (=) ikki tomoniga yoziladi. Masalan,
x + 3 = 5 tenglamasi x+3 ifodasi 5 ga teng ekanligini taʼkidlaydi. Tenglik belgisini (=) uelslik matematik Robert Recorde oʻylab topgan. U ikki bir xil uzunlikdagi parallel toʻgʻri chiziqlardan tengroq narsa boʻlmaydi deb hisoblagan.
Tenglamani yechish — bu uning barcha ildizlarini topish yoki ularning yoʻqligini (mavjud emasligini) isbot qilishdir. Baʼzan ildizlarga qoʻshimcha cheklashlar qoʻyiladi. Masalan, tenglama ildizlar faqat butun sonlar boʻlishi talab qilinishi mumkin.
Funksiya argumenti (baʼzan „oʻzgaruvchi“ deb ataladi) tenglamalarda nomaʼlum miqdor deb ataladi.
Oʻzgaruvchili tenglik bir x oʻzgaruvchili tenglama deb ataladi. Oʻzgaruvchining f(x) va g(x) ifodalar bir xil son qiymatlar qabul qiladigan har qanday qiymati tenglamaning ildizi yoki yechimi deyiladi.
Tenglamalarning teng kuchliligi
Bir xil ildizlarga ega tenglamalar teng kuchli tenglamalar deyiladi. Ildizga ega boʻlmagan har bir tenglama ham teng kuchli hisoblanadi. Tenglamani yechish jarayonida uni soddaroq, lekin berilgan tenglamaga teng kuchli boʻlgan tenglama bilan almashtirishga harakat qilinadi. Shuning uchun har qanday shakl almashtirishlarda berilgan tenglama unga teng kuchli tenglamaga oʻtishini bilish muhimdir.
Teorema: Agar tenglamada birorta qoʻshiluvchini tenglamaning bir tomonidan ikkinchi tomoniga ishorasini oʻzgartirib oʻtkazilsa, berilgan tenglamaga teng kuchli tenglama hosil boʻladi.
Teorema: Agar tenglamaning har ikkala tomonini noldan farqli bir songa koʻpaytirilsa yoki boʻlinsa, berilgan tenglamaga teng kuchli tenglama hosil boʻladi.
Tenglamalarning asosiy xossasi
Tenglama tarkibidagi algebraik ifodalar ustida turli amallar bajarish mumkin. Bunda tenglamaning ildizlari oʻzgarmaydi. Keng tarqalgan amallar quyidagilardir:
Tenglamaning har ikki tomoniga aynan bir xil haqiqiy sonni qoʻshish mumkin.
Tenglamaning har ikki tomonidan aynan bir xil haqiqiy sonni ayirish mumkin.
Tenglamaning har ikki tomonini 0 dan boshqa har qanday haqiqiy songa boʻlish mumkin.
Tenglamaning har ikki tomonini har qanday haqiqiy songa koʻpaytirish mumkin.
Tenglamaning istagan tomonida qavslarni ochish mumkin.
Tenglamaning istagan qismida oʻxshash qoʻshiluvchilarni keltirish mumkin.
Tenglamaning istagan aʼzosini bir qismdan ikkinchi qismga qarama-qarshi belgi bilan olib oʻtish mumkin.
Ba'zi hollarda har ikki tomonga ayrim bir funksiyalarni qoʻshish mumkin. Bunday amal bajarayotganda tenglama ildizlari yoʻqotilmasligiga e'tibor berish kerak.


Yüklə 415,86 Kb.

Dostları ilə paylaş:
1   ...   5   6   7   8   9   10   11   12   13




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin